

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

UNDERSEA NODE LOCALIZATION USING NODE-TO-
NODE ACOUSTIC RANGES IN A DISTRIBUTED SEAWEB

NETWORK

by

David C. Zinkhon

March 2009

 Thesis Advisor: Joseph A. Rice

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Undersea Node Localization Using Node-to-Node
Acoustic Ranges in Distributed Seaweb Network

6. AUTHOR(S) David C. Zinkhon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
Seaweb is a wide-area network interconnecting a set of distributed underwater nodes through the use of a DSP-based
acoustic communications modem at each node and through-water digital acoustic links between neighboring nodes.
As a by-product of Seaweb communications, the distances between neighboring nodes are obtained from the round-
trip acoustic travel-time measurements. If the network is deployed in an ad hoc distribution, or if an established
network is disturbed, the locations of the nodes are unknown to the operator. This thesis uses the node-to-node ranges,
which have been compiled at the designated master node, as input to an algorithm for estimating the relative locations
of all nodes. Synthetic network geometries serve to evaluate the algorithm with perfect ranges and with imperfect
ranges and/or incomplete data. Seaweb networks deployed at sea are the final test of the algorithm.

15. NUMBER OF
PAGES

116

14. SUBJECT TERMS underwater acoustics, Seaweb, localization, difference linearization

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

UNDERSEA NODE LOCALIZATION USING NODE-TO-NODE ACOUSTIC
RANGES IN A DISTRIBUTED SEAWEB NETWORK

David C. Zinkhon

Lieutenant, United States Navy
B.S., University of New Mexico, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS

from the

NAVAL POSTGRADUATE SCHOOL
March 2009

Author: David C. Zinkhon

Approved by: Joseph A. Rice

Thesis Advisor

Daphne Kapolka
Chair, Engineering Acoustics Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Seaweb is a wide-area network interconnecting a set of distributed underwater

nodes through the use of a DSP-based acoustic communications modem at each node and

through-water digital acoustic links between neighboring nodes. As a by-product of

Seaweb communications, the distances between neighboring nodes are obtained from the

round-trip acoustic travel-time measurements. If the network is deployed in an ad hoc

distribution, or if an established network is disturbed, the locations of the nodes are

unknown to the operator. This thesis uses the node-to-node ranges, which have been

compiled at the designated master node, as input to an algorithm for estimating the

relative locations of all nodes. Synthetic network geometries serve to evaluate the

algorithm with perfect ranges and with imperfect ranges and/or incomplete data. Seaweb

networks deployed at sea are the final test of the algorithm.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ...1
A. PROBLEM STATEMENT ...1
B. SCOPE ..1

1. Objective of Algorithm..1
2. Limitations Not Addressed..2

C. OUTLINE OF THESIS ...2

II. BACKGROUND ..5
A. SEAWEB OPERATIONS...5

1. Equipment ..6
2. Network Layout ...7
3. Link-Layer Protocols...9

B. AD HOC DISCOVERY PROCESS ...11
1. Broadcast Ping ...11
2. Discovery...11

III. SOURCES OF ERROR...15
A. ACOUSTIC VARIABILITY ..15

1. Sound Speed Profile...15
2. Reflected Paths ...17

B. GEOMETRIC ERRORS...18
1. Depth Variance...18
2. Watch Circles ...20
3. Geometric Dilution of Precision ...20

C. EXPECTED ACCURACY..21

IV. LOCALIZATION METHODS...23
A. NO SOLUTIONS ...23
B. AMBIGUOUS SOLUTIONS ..24
C. DIFFERENCE LINEARIZATION METHOD ..25

V. ALGORITHM IMPLEMENTATION ..29
A. OPERATOR INPUT ...29
B. STACK BUILD ..30
C. STACK SIFT..31
D. SOLVER ...33
E. EXAMPLE OF A FIVE-NODE LAYOUT..34

VI. SYNTHETIC DATA ANALYSIS ..39
A. OUTLIER RANGE REJECTION ...40
B. ERROR-FREE RANGES ...40
C. ERROR-INDUCED RANGES ...44

VII. ST. MARGARET’S BAY EXPERIMENT..47
A. SETUP...47

 viii

B. ACOUSTIC ENVIRONMENT...48
1. Transmission Loss..48
2. Noise Level..49
3. Multipath Propagation ..51

C. DATA ..53
D. RESULTS ...54

VIII. HORTEN EXPERIMENT ..57

IX. CONCLUSIONS ..61
A. SUMMARY OF RESULTS ..61
B. RECOMMENDATION...61
C. FURTHER RESEARCH...61

1. Pruning Ambiguous Solutions ..61
2. System Feedback..62

APPENDIX A: ALGORITHM..65

APPENDIX B: AMBIGUOUS SOLUTIONS FOR ST. MARGARET’S BAY SEA
TRIAL...87

LIST OF REFERENCES..97

INITIAL DISTRIBUTION LIST ...99

 ix

LIST OF FIGURES

Figure 1. Typical Seaweb configuration consisting of both fixed nodes mounted on
the seabed along with UUVs acting as mobile nodes (from [2]).5

Figure 2. Racom gateway buoy (from [1])..6
Figure 3. Seaweb repeater node using a telesonar modem (from [5]).7
Figure 4. Location of Seaweb nodes in June 2008 at St. Margaret’s Bay sea trial.

Node 3 (in red) was the gateway buoy and master node (from [1]).8
Figure 5. Seaweb node-to-node communication scheme (from [10])...............................9
Figure 6. Seaweb ranging process (from [2])..10
Figure 7. The broadcast ping process (after [11]). ..11
Figure 8. Left: Ad hoc locations of nodes. Right: Initial broadcast ping by master

node, A, which discovers nodes B, C, and D (after [1]).12
Figure 9. Left: Secondary broadcast pings by node B that discovers M, J, K, and

determines range from B to C. Right: Secondary broadcast ping by C that
discovers node P and determines ranges from C to B and C to K (after
[1])..12

Figure 10. Left: tertiary ping by P that discovers node Q. Right: Depiction of routes
to all nodes (after [1]). ...13

Figure 11. Representative sound speed profile based on Munk’s canonical profile.16
Figure 12. Ray traces for source located at the sound channel axis (top) and above the

sound channel axis (bottom). ...17
Figure 13. Range error caused by nodal depth differences. ..19
Figure 14. Geometric Dilution of Precision (from [15]). ..21
Figure 15. Two-node, two-range solution set (after [3]). ..24
Figure 16. Law of cosines used to determine the angle  to the unknown node

location from node i, a known node (from [2]). ..25
Figure 17. Three-node, three-range solution (after [3]). ...26
Figure 18. The range stack is constructed from data files...31
Figure 19. Example of building the vector of range data for a node pair.32
Figure 20. Locations of example nodes...35
Figure 21. Example nodes rotated and translated to place ‘master’ at origin and

‘on_X’ on the positive x-axis...36
Figure 22. Plotted results of all ambiguous solutions of example nodes.37
Figure 23. Total number of nodes localized for 100 realizations of 15-node networks

in an 8-km by 6-km area, using error-free ranges..42
Figure 24. Total number of iterations for 100 realizations of 15-node networks in an

8-km by 6-km area, using error-free ranges...42
Figure 25. Total number of ambiguous solutions for 100 realizations of 15-node

networks in an 8-km by 6-km area, using error-free ranges.43
Figure 26. Mean localization error for 100 realizations of 15-node networks in an 8-

km by 6-km area, using error-free ranges. ...44
Figure 27. Total number of nodes localized for 100 realizations of 15-node networks

in an 8-km by 6-km area, with range errors...45

 x

Figure 28. Total number of iterations for 100 realizations of 15-node networks in an
8-km by 6-km area, with range errors..45

Figure 29. Total number of ambiguous solutions for 100 realizations of 15-node
networks in an 8-km by 6-km area, with range errors.46

Figure 30. Mean localization error for 100 realizations of 15-node networks in an 8-
km by 6-km area, with range errors. ..46

Figure 31. Seaweb network components: Seaweb server, racom gateway buoy, and
Seaweb repeater node (after [1])..47

Figure 32. Attenuation coefficient  in dB/km versus transmission frequency in
kHz, based on Francois and Garrison [17 and 18] for salinity S = 35 ppt,
acidity pH = 8, and depth D = 50 m...49

Figure 33. Noise spectrum level based on empirical formula by Coates (after [19]).
NLwind is for 5 m/s (10 kts) wind speeds. ..50

Figure 34. Effect of surface wind speed on noise spectrum level based on empirical
formulae by Coates (after [19])..51

Figure 35. Sound-speed profiles from St. Margaret’s Bay..52
Figure 36. Bellhop eigenray traces for June 2008 St. Margaret’s Bay trial show a

downward-refracting channel with multipath propagation. Direct-path
arrivals are in red. Left: 1 km spacing. Right: 4 km spacing. Note the
time-scale and amplitude-scale changes on the channel impulse response
plots..52

Figure 37. Locations of St. Margaret’s Bay nodes referenced to node 3.53
Figure 38. St. Margaret’s Bay network rotated with node 3 as the ‘master’ node and

node 20 as the ‘on_X’ node. ..54
Figure 39. Ambiguous solution exhibiting the smallest mean error per node (80.8 m)

compared with the recorded node locations...55
Figure 40. Horten Seaweb network layout (from [1])...57
Figure 41. Horten experiment nodes rotated with node 3 as the ‘master’ node and

node 10 as the ‘on_X’ node. ..58
Figure 42. Ambiguous solutions of the Norway sea trial data. ...59

 xi

LIST OF TABLES

Table 1. Summary of measured range errors based on depth differences.19
Table 2. Range Error Budget for two nodes 4000 meters apart with a 2% slope.22
Table 3. Example of the node-to-node range data format used by the algorithm.

The red column is the node address that initiated the communication, the
blue column is the node address that responded, and the black column is
the calculated range between the two noes in meters. Zeros indicate that
the initiating node did not receive a response..30

Table 4. Example output range array from Stack_Sift.m. ...33
Table 5. Example node locations and ranges...35
Table 6. Node-to-node range matrix after 4000-meter maximum range cutoff is

applied..36
Table 7. Percent Error improvement gained by Stack_Sift.m.40
Table 8. GPS coordinates of 19 nodes involved in June 2008 Seaweb ad hoc

network discovery experiment...48

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

First I would like to thank my wife, Amy, for the past eleven years of continued

love, support, and inspiration, as well as my two beautiful daughters, Grace and

Elizabeth.

To my thesis advisor, Professor Joe Rice, for mentoring through the thesis process

and allowing me to work with the technologies and opportunities Seaweb presents.

To Chris Fletcher of SPAWAR Systems Center Pacific, for his expeditious

retrieval of vital data.

To the numerous professors and staff that made my time at the Naval

Postgraduate School the enriching experience it was.

And finally to my fellow students, Chris, Paul, Nevin, Greg, Dave, Chee Wei,

Bill, and Jason that helped me through the challenging classes and listened to my ideas.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

Seaweb is an acoustic communications technology enabling underwater sensor

networks. Data packets usually flow from a sensor node to the master node, with

command and control packets flowing in the reciprocal path. More generally, a network

packet begins at the source node, travels through repeater nodes, and ends at the

destination node. The network routes are dictated by routing tables stored in the acoustic

modems. Prior to Ong’s development of the Seaweb ad hoc discovery process [1], the

routing tables were initialized and maintained by the operator. By using the algorithms

developed in [1], Seaweb networks are now capable of self-determining the routing

tables, thereby allowing the network to be deployed with an ad hoc distribution.

However, with ad hoc deployments, the operator may not know the locations of the nodes

within the network. When the routing algorithm from [1] is implemented, the node-to-

node ranges are measured through the use of acoustic propagation time delays and

assumptions about the speed of sound in water.

Previous thesis work by Hahn [2] and Ouimet [3] used acoustic communication

ranging in the Seaweb network for localizing unmanned underwater vehicles (UUVs).

Respectively, their methods involved weighted solutions and center of mass approaches.

Later, Reed [4] used the method of difference linearization, based on the principles used

in the Global Positioning System (GPS), to produce superior results for tracking UUVs.

This thesis uses the formulas developed in [4] to estimate the relative positions of

the nodes using planar trigonometry.

B. SCOPE

1. Objective of Algorithm

The algorithm produced in this thesis uses the range data measured during the

Seaweb discovery process to estimate the horizontal positions of the discovered nodes.

 2

This is accomplished by first setting up a horizontal coordinate system that can be used as

a frame of reference. The origin is fixed at the location of the master node because it is

usually able to self locate by means of GPS. The positive x-axis is oriented to intersect

with a neighbor node of the master. This node is referred to as the ‘on_X’ node and is

preferably located along a known line of bearing from the ‘master’ node to allow the end

user to translate the x-y coordinate system to a traditional latitude-longitude grid.

Next, range data gathered each time a node conducts a broadcast ping are

organized into a time-stamped N N matrix. These matrices are compiled into a stack

that is sequenced by the time-stamp. The algorithm then looks down each column of the

stack and statistically analyzes all the ranges available between a particular pair of nodes,

eliminating any ranges that fall outside a ten percent confidence interval from the mean.

Next the algorithm uses the filtered mean ranges and localizes the node positions using

the formulas outlined in [4]. Due to ambiguous solutions when insufficient ranges are

known for a particular node, several solution sets may be possible. The output of the

algorithm is the x-y position of each node and a visual representation of each ambiguous

solution.

2. Limitations Not Addressed

While the algorithm estimates the relative horizontal locations of the network

nodes, it does not attempt to then rectify these locations to the traditional latitude-

longitude coordinate system. The algorithm also does not attempt to correct for range

errors inherent to the method used to derive them; it simply eliminates statistical outliers

from the range data in an attempt to find the best solution given all the data.

C. OUTLINE OF THESIS

Chapter II is an overview of Seaweb equipment and operations, including the

acoustical method used to measure inter-node ranges. Chapter III then addresses some of

the errors inherent with this ranging method. Chapter IV discusses the localization

methods used by the algorithm, and Chapter V details their implementation. Chapter VI

describes results obtained with various synthetic data, including error-free as well as

 3

incomplete and/or inaccurate data. Chapter VII analyzes the range data from Seaweb sea

trial testing. Chapter VIII summarizes the conclusions reached in the thesis, and Chapter

IX discusses recommendations and possible further research.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. SEAWEB OPERATIONS

Seaweb is a networking technology supporting underwater communication

between any number of fixed sensor nodes, repeater nodes, and gateway nodes. It is also

configurable to communicate with mobile nodes including submarines and UUVs [5, 6].

Communications through the water with only a single gateway node at the sea surface

improves both the stealth and survivability of the network. A representative deployment

of Seaweb is shown in Figure 1, where the network includes a submerged UUV, a radio-

acoustic communication (racom) buoy acting as the gateway node, and repeater nodes.

The UUV uses the network infrastructure while submerged, and the UUV itself can act as

a gateway node while on the surface.

Figure 1. Typical Seaweb configuration consisting of both fixed nodes mounted on the
seabed along with UUVs acting as mobile nodes (from [2]).

 6

1. Equipment

 The physical composition of Seaweb consists of three components: the Seaweb

server, underwater sensor/repeater nodes, and a gateway buoy that allows interactions

between the server and underwater nodes. The Seaweb server is physically located either

onboard a control ship or ashore, the only requirement being that radio communications

with the gateway buoy are available. If direct radio communications are not possible

with the gateway buoy, demonstrated alternatives are an Iridium satellite link or cellular

telephone modem. The Seaweb server is used by the operator to command, control and

monitor the deployed network [7].

 The racom gateway buoy is moored at a convenient location within the Seaweb

domain, either near the center to maximize the number of underwater nodes that it is in

direct contact with, or at the edge to ensure a line-of-sight radio link to the Seaweb

server. The buoy is maintained in place by an anchor and swivel system moored on the

ocean floor. The surfaced portion of the buoy consists of solar panels, radio

communication equipment, satellite communication equipment, and a GPS receiver.

Seaweb acoustic communications occur in the 9-14 kHz frequency band through a

submerged acoustic transducer married to the mooring line. Figure 2 depicts the racom

gateway buoy configuration used at the St. Margaret’s Bay sea trials.

Figure 2. Racom gateway buoy (from [1]).

 7

Underwater fixed nodes are generally sensor nodes or repeater nodes. The

repeater nodes are moored to the seabed and usually consist of anchor, acoustic release

module, telesonar modem, and subsurface float. The telesonar modem is commercially

available from Teledyne Benthos, Inc. and is programmed with specialized Seaweb

networking software and firmware [8]. The acoustic release serves for recovery of the

repeater node. Figure 3 shows a typical deployed configuration of a repeater node.

Figure 3. Seaweb repeater node using a telesonar modem (from [5]).

2. Network Layout

 Seaweb networks can consist of any number of underwater nodes and gateway

buoys, and the network routes are reconfigurable if a node failure occurs. Most Seaweb

layouts consist of a single gateway node that is positioned in locations to maximize its

survivability, i.e., out of ship traffic lanes and away from other near shore hazards. Often

the gateway buoy is identified as the ‘master’ node, since it is in direct radio contact with

the server. The term ‘master’ node is also used in the localization process, and since the

gateway buoy position at the sea surface is known from GPS, it provides a geographic

reference point. Care must be taken when deploying the first underwater node since this

is the second reference point used by the localization algorithm, known as the ‘on_X’

 8

node in the localization algorithm. The ‘on_X’ node should be deployed along a known

line of bearing from the ‘master’ node thereby allowing the operator to fix the location of

these two nodes on a nautical chart.

Figure 4. Location of Seaweb nodes in June 2008 at St. Margaret’s Bay sea trial. Node
3 (in red) was the gateway buoy and master node (from [1]).

 The rest of the network nodes are positioned in the area of interest. Typically, the

layout is designed such that multiple communication routes are available for data transfer

to each node. This increases the overall reliability of the network by producing

 9

redundant routes. The distance between the nodes can be expected to be one to five

kilometers depending on the maximum acoustic communications range for the

deployment environment. Significant environmental factors include the sound-speed

profile, the background noise level, and transmission loss [9]. Figure 4 shows the

network layout used in the St. Margaret’s Bay sea trial in June 2008.

3. Link-Layer Protocols

Seaweb node-to-node communications use a link-layer protocol that allows for

addressing, power control, adaptive modulation, and ranging [10]. The protocol uses a

request to send (RTS) and clear to send (CTS) to establish first contact between two

nodes prior to transferring data between the nodes. Any corrupted data are requested to

be resent by the receiving node using a selective automatic repeat request (SRQ). This

concept is diagrammed in Figure 5. Following the same handshake strategy, Seaweb also

supports a PING/ECHO protocol useful during the ad hoc discovery process.

Figure 5. Seaweb node-to-node communication scheme (from [10]).

To determine the range between neighboring nodes, a hyperbolic frequency-

modulated (HFM) chirp precedes the PING packet sent by the first node (node i in Figure

6, below). Node j receives the ping and determines the time of arrival by picking the

peak of a HFM matched filter. Node j then waits a specified dwell time, j, prior to

 10

issuing a return echo (with HFM) that follows the same path as the initial ping based on

reciprocity. Therefore, the reciprocal sound propagation delays between nodes i and j are

equal,

 ij jid d . (2.1)

Once the echo is received at node i, the Seaweb modem measures the range between the

two nodes based on the total delay time,

j o ij ji jt dt d    , (2.2)

and substituting Equation (2.1) and solving for dij gives

2
j o j

ij

t t
d

 
 . (2.3)

Seaweb uses the assumption that the speed of sound in the ocean is co = 1500 m/s for

determining the node-to-node range,

ij o ijcr d  . (2.4)

Figure 6. Seaweb ranging process (from [2]).

 11

B. AD HOC DISCOVERY PROCESS

1. Broadcast Ping

Prior to the introduction of the ad hoc discovery process developed in [1], the

routing tables were manually determined and maintained by the operator located at the

Seaweb server. After a Seaweb network was deployed in the water, the first operation

performed was node-to-node ranging to verify that the pre-programmed routing tables

were functional. The Seaweb server initiated this process by directing the ‘master’ node

to transmit a broadcast ping. When the various repeater nodes detect the broadcast ping,

they reply with an echo that confirms that they are within acoustical communications

range, the ranges are calculated, and then communicated back to the server. This process

is depicted in Figure 7. The operator then sequentially directed each node to repeat the

broadcast ping process until all nodes were discovered and all ranges reported to the

server. All of this served only to confirm the validity of pre-programmed routes.

(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry

Figure 7. The broadcast ping process (after [11]).

2. Discovery

The discovery process developed in [1] automates the initialization of network

routes. A summary of this process is shown in Figures 8, 9, and 10. First the master

node conducts a broadcast ping, and then the master node systematically commands each

discovered node to conduct its own broadcast ping to potentially discover more nodes.

The master node continues to direct all new nodes to conduct their own broadcast ping.

 12

Upon completion, the master node algorithm determines the optimum route to each node

according to a cost function that considers the number of nodes that are in the path and

the ranges between each node. A by-product of this process are data tables containing the

ranges that each broadcast ping measured. The algorithm developed in this thesis uses

these range data tables to locate the network nodes.

Figure 8. Left: Ad hoc locations of nodes. Right: Initial broadcast ping by master node,
A, which discovers nodes B, C, and D (after [1]).

Figure 9. Left: Secondary broadcast pings by node B that discovers M, J, K, and
determines range from B to C. Right: Secondary broadcast ping by C that
discovers node P and determines ranges from C to B and C to K (after [1]).

A

B

C

D

M

J

K

P

Q

A

B

C

D

M

J

K

P

Q

A

B

C

D

M

J

K

P

Q

A

B

C

D

M

J

K

P

Q

 13

Figure 10. Left: tertiary ping by P that discovers node Q. Right: Depiction of routes to
all nodes (after [1]).

A

B

C

D

M

J

K

P

Q

A

B

C

D

M

J

K

P

Q

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. SOURCES OF ERROR

A. ACOUSTIC VARIABILITY

1. Sound Speed Profile

Two significant assumptions are made in the Seaweb estimation of node-to-node

ranges, the first of which is that the sound speed, co, used in Equation (2.4) is 1500

meters per second. Sound speed in the ocean varies from 1480 m/s to 1520 m/s [12],

which represents a 1.3% deviation from the value assumed by Seaweb. For example, if

the true sound speed is 1480 m/s and the range between two nodes is 3000 meters, the

reported range would be 3040 meters. Assuming that the true sound speed is constant

over the entire area of the network, this results in range solutions which are typically

larger than the true ranges between the nodes.

The second assumption made by the Seaweb range estimation is that sound travels

in straight lines and hence is linearly related to range. However, the variations in

temperature, pressure, and salinity in the water column cause significant variability in the

speed of sound. This results in refraction as sound passes through the various layers of

the water column. To illustrate this, a representative sound speed profile is produced

using Munk’s canonical profile [13]

    0 1 1c z c e        (3.1)

where

 2 axisz z

B



 (3.2)

and co is the sound speed at the sound channel axis, is the perturbation coefficient, zaxis

is the depth of the sound channel axis, B is the scale depth, and  is the dimensionless

distance beneath the sound channel axis. For this example the values of the constants are

chosen as 1000 maxisz  , 1000 mB  , 0.0057  , 1500 m/soc  , and the maximum

depth is 4500 m. The resultant sound speed profile is depicted in Figure 11.

 16

1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Sound Speed, c(z) (m/s)

D
ep

th
 z

 (
m

et
er

s)

Sound Speed Profile

Figure 11. Representative sound speed profile based on Munk’s canonical profile.

If the source and receiver nodes are located at the axis of the sound speed profile,

a straight non-refracted path between them exists. When either source or receiver is not

located at the sound channel axis, there is no straight line path between them. This is

graphically illustrated in Figure 12 using fifteen rays (note: if a ray strikes either the

surface or the bottom, it is removed from the analysis). Since the actual ray paths can be

longer than the straight line path assumed by the Seaweb ranging estimation, the

measured ranges tend to be overestimates of the actual ranges. Using the constraints of

this example, for a 5000 meter distance between nodes, the travel time difference could

be as great as 0.1 second which equates to a range overestimate of 150 meters, which is

an error of 3%.

Sound Channel Axis

 17

0 10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

Ray Trace with Source at 1000m

Range (km)

D
ep

th
 (
m

)

0 10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

Ray Trace with Source at 500m

Range (km)

D
ep

th
 (

m
)

Figure 12. Ray traces for source located at the sound channel axis (top) and above the
sound channel axis (bottom).

2. Reflected Paths

 The previous discussion does not account for rays that interact with either the

surface or the bottom, both of which occur in the real world. Interactions with a

boundary results in absorption and scattering that reduce the intensity of the sound

energy. For the surface, the amount of reduction depends on the roughness of the sea

surface and the spectral frequency of the transmitted signal. For a relatively smooth

surface with wave heights of approximately 0.3 meters, and a transmitted signal of 25

kHz, each reflection is estimated to cause a 3 dB loss [14]. At the operational frequencies

of Seaweb (9-14 kHz) the estimated losses are less since the transmitted wavelengths are

 18

larger relative to the wavelength of the sea surface [14]. Bottom reflection losses are

more difficult to predict because of the large variations in bottom type and characteristics.

Additionally, the grazing angle at which the sound strikes the bottom affects the amount

of loss in each interaction. However it can be expected that the losses to the bottom are

on the order of 8 dB per interaction [14].

Seaweb takes advantage of these losses when determining the node-to-node

ranges by using a peak-detector filter which allows the ranging algorithms to select the

highest intensity multipath arrival. Since the reflected rays will generally have reduced

intensity due to interactions with the boundaries, they are ignored by the filter in favor of

the direct path rays.

B. GEOMETRIC ERRORS

Some of the errors that can degrade the node-to-node range data are not a result of

acoustics. Rather, these errors arise from the physical geometry of the network nodes.

1. Depth Variance

The sea floor can exaggerate the measured range. Figure 13 depicts a situation

where two nodes are located at different depths by virtue of the bathymetry contours.

The green arrow is the horizontal range between the two nodes, and the depth difference

is z. By the Pythagorean Theorem the measured slant range is

 2 2()measured actualr r z   . (3.3)

This results in measured ranges that are greater than horizontal ranges between the nodes.

 19

Figure 13. Range error caused by nodal depth differences.

This difference between slant range and horizontal range is neglected by the

algorithm, which analyzes for a 2-D solution where all nodes are assumed to be in the

same horizontal plane. This is done not only to simplify the algorithms used, but because

the differences in the ranges are typically negligible, being less than 0.1% error in most

cases. A 10% slope is required to produce even a 0.5% error in the measured range.

Table 1 evaluates the range errors for a few geometries.

Actual
Range

(m)

Depth
Difference

(m)
% Slope

Measured
Range

(m)
% Error

5000 5 0.10% 5000.002 0.000%
5000 10 0.20% 5000.01 0.000%
5000 50 1.00% 5000.25 0.005%
5000 100 2.00% 5001 0.020%

2500 5 0.20% 2500.005 0.000%
2500 10 0.40% 2500.02 0.001%
2500 50 2.00% 2500.5 0.020%
2500 100 4.00% 2501.999 0.080%

500 5 1.00% 500.025 0.005%
500 10 2.00% 500.1 0.020%
500 50 10.00% 502.4938 0.499%
500 100 20.00% 509.902 1.980%

Table 1. Summary of measured range errors based on depth differences.

Slant Range

Horizontal Range
}

Sea Floor

z

 20

2. Watch Circles

The ocean is a dynamic environment where currents and tides displace the

transducers even when the moorings are stationary. These rotations are commonly called

watch circles and are well know to a mariner who has spent time at anchor. Based on the

schematic layout of a telesonar repeater node depicted in Figure 3, the transducer is

approximately 3 meters off the bottom. This results in very little variation in the

maximum range difference between two nodes. If both nodes leaned 30 degrees in

opposite directions, the difference in range is only 3 meters. The racom gateway buoy

ranges are much more influenced by watch circles because of the longer moorings.

Based on the diagram in Figure 2, the transducer could experience a watch circle of up to

78 meters from the anchor point for a 30-degree offset from vertical.

3. Geometric Dilution of Precision

The last error considered arises from the relative bearings of the nodes in the 2-D

plane and the resulting angles between the nodes. Consider the case illustrated in Figure

14 where the range error (r) is considered to be the same for each pair of nodes. When

the two reference nodes are located near each other (Figure 14 a), the triangularized

position of the unknown node has a large uncertainty region referred to as geometric

dilution of precision (GDOP). As the reference nodes are moved further apart (Figure 14

b) and the angle tr between them increases, the GDOP is reduced until it reaches a

minimum when tr is 90 degrees. Since the error is a function of the geometric bearings

of the nodes, careful planning of the node locations can minimize GDOP.

 21

Figure 14. Geometric Dilution of Precision (from [15]).

C. EXPECTED ACCURACY

While all of the range errors are present in every scenario, the magnitude of their

contributions depends on the location, layout, and environmental conditions.

Nevertheless, some generalizations can be made about the localization error budget. The

largest sources of error are the ray path assumption - which results in an overestimate of

the range - and the watch circle of the racom buoy - which can cause an overestimate or

underestimate of the range. The assumption that sound speed is co = 1500 m/s can result

in significant range errors in either direction, and the effects of varying depth are

typically small but tend to overestimate the range. Qualitatively, the sum of all of these

errors results in an overestimation of range.

To get a feeling for the range error budget, consider a set of nodes that are

actually 4,000 meters apart with a 2% slope between the nodes. Additionally assume a

sound-speed profile that results in an average sound velocity of 1480 m/s. Since the

racom buoy produces the largest watch circle errors, choose this as one of the two nodes.

Summing all the range errors, the measured range would be reported as 4278.5 meters

which is a 7% error. A breakdown of the contribution of each error type is contained in

Table 2.

 22

Range

Error (m)
% Error

Sound
Speed

54 1.34

Ray Path 120 3.00

Depth
Variance

1 0.02

Watch
Circle

(racom)
103 2.58

Watch
Circle

(telesonar)
1.5 0.04

Total Error 278.5 7

Table 2. Range Error Budget for two nodes 4000 meters apart with a 2% slope.

 23

IV. LOCALIZATION METHODS

The localization of nodes in a Seaweb network is based on the range-fixing

concept of using intersecting circles centered on known locations. For the purpose of this

thesis, an ‘unknown’ node is one that has not yet been localized and a ‘known’ node is

one that has been localized on the x-y plane either by a priori information, or by a range-

fixing algorithm. Localization by intersecting circles works well when no node

positional errors or range errors are present, but difficulties can arise when errors are

introduced. Previous work by [2] and [3] attempted to mitigate these errors by using

weighted averages and center of mass method, respectively. Both were tested in [4] and

compared with the difference linearization method outlined by [16]. The difference

linear method was found to be superior in estimating the position of unknown nodes.

Depending on the number of range measurements between an unknown node and

neighboring known nodes, three possibilities exist for the type of solution that can be

found for the position of the unknown node. These are one range, which results in no

solutions, two ranges, which result in ambiguous solutions, and three or more ranges

which result in an exact solution. These cases are discussed in the following sections.

Ranges from one unknown to other unknown nodes result in no additional useful

information when attempting to localize the unknown node.

A. NO SOLUTIONS

If the unknown node has only one range to a known node, there are infinitely

many possible locations for the unknown node. The solution set is a circle centered at the

location of the known node with a radius equal to the range from the known node to the

unknown node. For this reason, unknown nodes with only a single range are not

evaluated and are passed over until the algorithm has localized a second node for which

the unknown node has a range, resulting in the case described in the next section.

 24

B. AMBIGUOUS SOLUTIONS

When the unknown node has ranges to two neighboring known nodes, there are

two ambiguous solutions that exist where the two range circles intersect. One will be

above a line that intersects the two known nodes, and the other is a reflection below the

line. This is depicted in Figure 15.

Figure 15. Two-node, two-range solution set (after [3]).

Determination of the locations of the two ambiguous solutions is made using the

law of cosines. Figure 16 demonstrates the locations of the two known nodes, i and j, and

the two red triangles symbolize the unknown node’s ambiguous solutions. The node-to-

node ranges from the known nodes to the ambiguous solutions are represented by ri and

rj, and rij is the range along the axis of reflection between the two known nodes. The

angle from the axis of reflection to the bearing of the unknown node is determined using

the law of cosines

2 2 2

1cos
2

i ij j

i ij

r r r

r r
 

  
   

 
. (4.1)

The bearing to the ambiguous solution is simply the negative of that angle. Once  is

determined, the x and y coordinates of the unknown node are given by

Ambiguous
Solutions

Known Node
Locations

Range
Circles

Axis of
Reflection

 25

cos

sin
i

i

x r

y r







 . (4.2)

From Figure 15 it is noted that the x coordinates are the same for both ambiguous

solutions and the y coordinates are reflections about the x-axis.

Figure 16. Law of cosines used to determine the angle  to the unknown node location
from node i, a known node (from [2]).

C. DIFFERENCE LINEARIZATION METHOD

When an unknown node has ranges to three known nodes, a single unambiguous

solution to the location of the unknown node exists where the three range circles

intersect, as seen in Figure 17. This trilateration is the basis for radar navigation and the

Global Positioning System.

 26

Figure 17. Three-node, three-range solution (after [3]).

The difference linearization method is based on the fact that in an n-dimensional

coordinate system, the location of an object can be found if ranges are known to n+1

fixed locations. In a 2-D system, the distance ri between the ith point at a known position

and the object located at (x, y) is given by the Pythagorean theorem:

2 2 2)(()i i ir x x y y    . Since this is a 2-D system, the distances to three known

locations may be written as a system of equations of the form

2 2 2
1 1 1

3

2 2 2
2 2 2

2 2 2
33

() ()

 () ()

() ()

r x x y y

r x x y y

r x x y y

     
   

      
        

. (4.3)

The difference linearization method described in [16] is applied to this system of

equations. This method first eliminates the square terms and reforms the equality so that

it is the sum of a pair of simultaneous equations in x and y,

2 2 2 2 2 2

1 2 2 1 2

3 2 3 2 2

1 1 2 1 2

2 2 2 2 2 2
2 3 3 2 3

)(() (() (
 2

(() () (

))

)())

r r x x x y yx

x

x

yr r x x y

y y

x y yy

         
              

 

   
. (4.4)

Solving for the location of the object (x, y) results in

1 2 2 2 2 2 2

2 1 2 1 1 2 1 2 1 2

2 2 2 2
3 2 3 2 2 3 2 3

2 2
2 3

(() () (1

(2 () (

)()

) (

)

)())

x r r x x y yx

xy

x y y

x y y r r x x y y

        
              


. (4.5)

Known Node
Locations

Unambiguous
Solution

Range
Circles

 27

It is possible for an unknown node to have ranges to more than three known nodes

causing Equation (4.3) to be over-determined. Two possibilities then exist for estimating

the location of the node. Either the over-determined system of equations can be solved

simultaneously using a least-squares procedure, or the ranges can be selected in

combinations of three and the position estimated as a weighted average. When the range

data contains errors, the latter method was found to be superior by [4] due to its ability to

successfully mitigate range errors. For this reason using combinations of ranges and

averaging the solutions is implemented in this thesis.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

V. ALGORITHM IMPLEMENTATION

The algorithm developed in this thesis is implemented in the MATLAB

programming language and consists of four basic stages: operator input, data input,

removal of outliers from the data, and determining the locations of the nodes. Each stage

is written as a separate function that is called by a master program. The MATLAB code

is listed in Appendix A.

A. OPERATOR INPUT

The first stage requires the operator to provide the parameters associated with the

Seaweb network to be analyzed. The operator identifies the address of each node in the

network, and specifies the ‘master’ node and the ‘on_X’ node. The ‘master’ node is

usually the gateway buoy that supports interface between the underwater network and the

operator. A useful attribute of the gateway buoy is its on-board GPS receiver. The

‘on_X’ node is the only other node in the network that must be specially designated. It

must be close enough to the ‘master’ node to ensure that a range measurement is

available and the operator must be able to specify what the true bearing is from the

‘master’ node to the ‘on_X’ node. This permits the operator to orient the solution

produced by the algorithm to a geo-referenced coordinate system, such as latitude-

longitude.

The next thing the operator specifies are the names of the text files that contain

the node-to-node range data. The format of the text data files is shown in Table 3, below.

 30

3 30 75.1 10 120.6 20 294.3 11 412.8

10 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0

20 11 170.8 10 182.0 30 237.3 3 300.1

30 10 70.6 3 78.5 20 235.4 11 396.6

Table 3. Example of the node-to-node range data format used by the algorithm. The red
column is the node address that initiated the communication, the blue column is
the node address that responded, and the black column is the calculated range

between the two nodes in meters. Zeros indicate that the initiating node did not
receive a response.

B. STACK BUILD

The Stack_Build.m function takes the input data and sorts it into a single 3-D

matrix, referred to as a range stack, in a form suited for analysis. The range stack

consists of the same number of layers as the number of files loaded by the operator. Each

layer is a square matrix where the node addresses comprise the first row and first column

of the matrix and serve as headers for indexing the range data. For convenience, the

‘master’ node is assigned to the second row/column and the ‘on_X’ node is assigned to

the third row/column.

Each node-to-node range data file is loaded and its contents are organized as a

layer in the stack with each range datum stored in the row of the node that initiated the

communication and in the column of the corresponding node. Once a layer is completed,

it is placed on the stack and the next data file is loaded. A graphical representation of the

range stack appears in Figure 18, below.

 31

Figure 18. The range stack is constructed from data files.

C. STACK SIFT

The range stack is passed to the function Stack_Sift.m, where it is distilled to

determine the mean range between each pair of nodes. Each node pair is statistically

evaluated and the resulting mean ranges are stored in a single 2-D array.

The first step is for all the ranges for a particular node pair to be loaded into a

single vector. This is done by “looking down the stack” for the particular node pair for

all the range measurements made during the discovery process (e.g., node 3 to node 7).

Simultaneously the reciprocal combination is found by looking “up the stack” (e.g., node

7 to 3). This process is depicted in Figure 19.

 32

Figure 19. Example of building the vector of range data for a node pair.

The vector is statistically analyzed in an iterative manner to derive a good range

between the selected nodes by progressively eliminating outlier ranges that fall outside a

ten percent confidence interval for the data. Initially the mean and ten-percent

confidence interval of the data ranges are calculated and data that fall outside the

confidence interval are flagged. The flagged datum falling furthest from the mean is

eliminated. The mean and confidence interval are then recalculated and the process is

repeated until no data fall outside the confidence interval. The final calculated range

estimate for the node pair is then stored in the appropriate element of the 2-D array. Once

all node pairs have been analyzed, the resulting output is a 2-D square array that is

symmetric about the main diagonal, with node pairs that lack a range estimate denoted by

‘NaN’ (“Not a Number”).

Layer 2

Layer 3

Layer 1

Layer 1:
Node1-Node2

Layer 2:
Node1-Node2

Layer 3:
Node1-Node2

Layer 3:
Node2-Node1

Layer 2:
Node2-Node1

Layer 1:
Node2-Node1

Ranges

 33

NaN
'master'
Node

'on_X'
Node

Node 3 Node 4

'master'
Node

NaN
Range:
m -> X

Range:
m -> 3

Range:
m -> 4

'on_X'
Node

Range:
m -> X

NaN
Range:
X -> 3

Range:
X -> 4

Node 3
Range:
m -> 3

Range:
X -> 3

NaN
Range:
3 -> 4

Node 4
Range:
m -> 4

Range:
X -> 4

Range:
3 -> 4

NaN

Table 4. Example output range array from Stack_Sift.m.

D. SOLVER

Now that the range data are filtered, averaged, and organized, the Solver.m

function estimates the locations of the nodes. The first step is to establish a frame of

reference based on the known locations of ‘master’ and ‘on_X’ nodes. The master node

location is set to be at the origin (0,0) of a horizontal Cartesian grid. The positive x-axis

is forced to intersect the location of the ‘on_X’ node, such that the coordinate of this node

is (,0)master on Xr   .

Once a node is localized within the grid, it is considered to be a known node.

With these known nodes in place, the algorithm evaluates each remaining node to

determine how many ranges it has to known nodes in the grid. Three distinct possibilities

exist: one range, two ranges, or three or more ranges. If only one range exists to a known

node no attempt is made to localize that node since the solution set is a circle centered at

the known node’s location with a radius equal to the range.

If a node has ranges to only two other known nodes, there are two ambiguous

solutions to the location of that node. Since no solutions can be eliminated without

knowing some geographical constraints, all possible solutions are tracked. This means

that there are potentially (# of nodes 2)2  different possible solutions that must be stored. To

account for all these possibilities, a binary system is employed that tracks each time a

node has ranges to only two nodes. For example, in a five-node network there are eight

 34

possible solutions. The first two nodes, the ‘master’ and ‘on_X’ nodes are in fixed

locations, and the third node has ambiguous solutions that are labeled 00000 and 00100

respectively. If the fourth node also has only two ranges to nodes with known locations,

there are four possible solutions: 00000, 00100, 00010, and 00110. (These solutions are

alternately identified by their base-ten values 0, 4, 2, and 3). When a previously

unknown node becomes known, the program also sets a flag to cause it to cycle through

all the nodes again since a node that had previously been bypassed may now have

sufficient ranges to known nodes to make its localization possible.

When a node has ranges to three known nodes, the program then finds a single

solution using Equation (4.5). If this is the first time a solution has been determined for

this node, the program sets the flag to cause the program to loop through all nodes again

and also has that node evaluated in all possible ambiguous solution sets. If it not the

node’s first solution, the location determined by this particular iteration of the algorithm

is checked against the previous solution. If either the x-coordinate or the y-coordinate are

greater than some range difference threshold from the previous solution, the new solution

is considered improved and the program sets the flag to have every node in every

ambiguous solution set evaluated again.

This process continues until the all nodes have been located within the specified

tolerances of the previous solutions. The output of the program is a list of all the

ambiguous solutions, i.e., 00000, 00100, 00110, etc…, as well the locations of each node

for each ambiguous solution set.

E. EXAMPLE OF A FIVE-NODE LAYOUT

This section provides an example of the algorithm process for a simple five-node

layout for illustration purposes. The nodes are generated randomly on a 5000-meter by

5000-meter grid, the ‘master’ node is node 4, and the ‘on_X’ node is node 2. The true

node locations and the actual node-to-node ranges are given in Table 5. These true node

locations are plotted in Figure 20. Figure 21 is a plot of the same five nodes with the

frame of reference translated such that the origin is at the ‘master’ node and the positive

x-axis intersects the ‘on_X’ node.

 35

Node Locations (meters) Node-to-Node Ranges (meters)

Node x-position y-position NaN 1 2 3 4 5

4 1393 2735 1 NaN 3439 4143 3226 773

2 635 4567 2 3439 NaN 4798 1983 4161

3 3162 488 3 4143 4798 NaN 2860 4632

1 4074 4529 4 3226 1983 2860 NaN 3987

5 4788 4825 5 773 4161 4632 3987 NaN

Table 5. Example node locations and ranges.

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

12

3

4

5

Actual Node Locations

x-axis (m)

y-
ax

is
 (

m
)

Figure 20. Locations of example nodes.

 36

-3000 -2000 -1000 0 1000 2000
-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

4 2

3

1

5

Rotated Actual Node Locations

x-axis (m)

y-
ax

is
 (

m
)

Figure 21. Example nodes rotated and translated to place ‘master’ at origin and ‘on_X’
on the positive x-axis.

For realism, associated with limitations of acoustic communications, ranges in

excess of 4000 meters are removed, resulting in the range matrix shown in Table 6. This

is input into the Solver.m function.

Node-to-Node Ranges
NaN 4 2 3 1 5

4 NaN 1983 2860 3226 3987
2 1983 NaN NaN 3439 NaN
3 2860 NaN NaN NaN NaN
1 3226 3439 NaN NaN 773
5 3987 NaN NaN 773 NaN

Table 6. Node-to-node range matrix after 4000-meter maximum range cutoff is applied.

Solver.m produces the following ambiguous solutions: 0, 1, 2, and 3, all of which

are depicted in Figure 22. Comparing these solutions to Figure 21, it is apparent that

 37

ambiguous solutions 0 and 1 are on the wrong half-plane based on nodes 1 and 5 being

below the x-axis in Figure 21 and nodes 1 and 5 being above the x-axis in solutions 0 and

1. Solution 2 is eliminated due to nodes 1 and 5 being in nearly a straight vertical line in

Figure 21, while solution 2 has these nodes canted. Thus, solution 3 is the most accurate

solution. Also of note is that node 3 is not featured in any solution set because it has only

a single range to other nodes after the 4000-meter range cutoff is applied.

0 10002000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

4

Ambiguous Solution 0

2

1

5

x-axis (m)

y-
ax

is
 (

m
)

0 10002000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

4

Ambiguous Solution 1

2

1

5

x-axis (m)

y-
ax

is
 (

m
)

0 10002000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

4

Ambiguous Solution 2

2

1

5

x-axis (m)

y-
ax

is
 (

m
)

0 10002000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

4

Ambiguous Solution 3

2

1

5

x-axis (m)

y-
ax

is
 (

m
)

Figure 22. Plotted results of all ambiguous solutions of example nodes.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

VI. SYNTHETIC DATA ANALYSIS

Synthetic data for testing the algorithm are created in MATLAB using the built-in

random number generator functions. For the node locations, the function unidrnd

gives a uniformly distributed random number for both the x position and the y position.

Error-free ranges are calculated for the node pairs. Simulated range error is introduced

by multiplying the error-free range by a normal distribution, and then adding five percent

of the actual range multiplied by a chi-squared distribution,

 2(,) 0.05 ()reported actual actualr Normdist r r       . (6.1)

The normal distribution introduces some variability to the reported ranges to account for

sound speed assumption errors which tend to be small and proportional to the range

between the nodes. The mean,  is set to one, and the standard deviation,  is 0.1 to

ensure that most reported ranges will be near the actual range. The chi-squared

distribution is chosen as the model for the additive factor to account for refracted ray path

errors and depth variance errors which tend to be larger, but also proportional to the range

between the nodes. The parameter  is set to one for this evaluation, resulting in an

expected value of one, with a standard deviation of two. When this is multiplied by 5%

of the error-free range, it results in an approximate 5% overestimation of the range. This

method typically yields a reported range greater than the actual range. This reflects the

fact that most range errors result in an overestimation of the range as established in the

error analysis performed in Chapter III. Watch circle errors are not addressed since they

normally only affect the racom node and will typically average out over the course of a

network’s operations.

For analysis of the algorithm performance, fifteen nodes are randomly placed in

an eight-kilometer by six-kilometer region, since this is the approximate area of the St.

Margaret’s Bay sea trial. For each simulation, the node-to-node range calculations are

performed fifty times with different realizations of the range errors. Each set of ranges is

entered as a separate layer in the range stack. To match realistic acoustic communication

range limitations, ranges exceeding 4000 meters are omitted. For consistency across all

 40

simulations, node 1 is set as the ‘master’ node and node 2 is set as the ‘on_X’ node. The

algorithm is allowed an arbitrary maximum of 50 iterations to achieve convergence of the

node coordinates. For the simulation cases considered in this thesis, 50 iterations is

sufficient for convergence of the node positions. Increasing the number of allowed

iterations was found to not significantly increase the accuracy of the solutions.

 A. OUTLIER RANGE REJECTION

Simulation testing confirms that the Stack_Sift.m program rejects ranges that fall

outside the confidence interval and estimates a good range between nodes. For the

analysis in this section, the 4000-meter range cutoff is removed to maximize the number

of ranges evaluated in each pass. The analysis is performed for 100 realizations of the

fifteen-node network, resulting in 19,600 ranges being evaluated. The percent error

between the actual ranges and the ranges with offsets is recorded, and then the ranges are

analyzed by the Stack_Sift.m function. The percent error between the output of the

function and the actual ranges are then computed.

The mean percent range error for the ranges not run through Stack_Sift.m is 4.7%,

and the largest percent error is 5.0%. After the ranges are processed by Stack_Sift.m, the

mean error is reduced to 3.7%, and the single largest error is 4.3%. This filtering gains

over a 1% increase in the accuracy of the range data, which is substantial when localizing

nodes. In absolute terms, the accuracy of a 4000-meter range estimate is improved by 40

m. The results are summarized in Table 7.

 Mean % Error Max % Error Min %Error

Pre
Stack_Sift.m

4.7% 5.0% 4.3%

Post
Stack_Sift.m

3.7% 4.3% 3.0%

Table 7. Percent Error improvement gained by Stack_Sift.m.

B. ERROR-FREE RANGES

Error-free testing is performed to verify the ability of the algorithm to correctly

determine the positions of all nodes with perfect range data. Several statistics are

 41

computed for each network realization. The number of iterations required by the

algorithm to position all nodes within 25 meters accuracy is recorded because this is

indicative of the processing time required. The program also tracks how many of the

fifteen nodes have been localized to ascertain how many of the nodes are beyond the

maximum cutoff range to more than one node. Thirdly, the algorithm counts the total

number of ambiguous solutions caused by an unknown node having ranges to just two

known nodes. This count is important because it indicates how many ambiguous

solutions the operator must evaluate for redundant or impossible solutions, such as those

that result in a node being located on land when translated to a navigation chart. Lastly,

the true positions of all the nodes are translated and rotated to place the ‘master’ node at

the origin and the ‘on_X’ node on the x-axis. The positions of each node in each

ambiguous solution are then compared to these true positions, and the ambiguous

solution that has the lowest total range error is recorded. This total error is divided by the

number of nodes that were localized for that particular node set, to give the mean error

per node for that set.

One-hundred realizations are simulated to yield an adequate sample size. In four

of these 100 sets, the algorithm is unable to determine the location of a third node due to

no nodes being within the maximum cutoff range (4000 meters) of both the ‘master’ node

and ‘on_X’ node. These four realizations are excluded from analysis since they would

skew the statistics of interest.

The first statistics analyzed are how many of the fifteen nodes are able to be

localized and how many iterations of the program are required to converge all nodes to

within 25 meters of its previous solution. The mean number of nodes localized is 14.8 of

the possible 15. The mean number of iterations is 19.1, but this result is bi-modally

skewed by the large number of times the program required less than five iterations and

the number of times it required all 50 allowed iterations. More indicative statistics are

the median number of iterations (6.5) and the mode (3). Figures 23 and 24 provide

histograms of the results as well as the statistical values of interest.

 42

Nodes Found

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nodes

O
cc

u
ra

n
ce

s

Figure 23. Total number of nodes localized for 100 realizations of 15-node networks in
an 8-km by 6-km area, using error-free ranges.

Number of Iterations

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

Iterations

O
cc

u
ra

n
ce

s

Figure 24. Total number of iterations for 100 realizations of 15-node networks in an 8-
km by 6-km area, using error-free ranges.

The number of ambiguous solutions is also evaluated. The mean number of

ambiguous solutions is 11.1, and the maximum is 64. For a fifteen-node network the

minimum number of solutions is 2, with a theoretical maximum of 8192 solutions. The

results are summarized in Figures 25.

Mean
 19.1
Minimum
 2
Maximum
 50
Median
 6.5
Mode
 3

Mean
 14.8
Minimum
 3
Maximum
 15
Median
 15
Mode
 15

 43

Number of Ambiguous Solutions

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Ambiguous Solutions

O
cc

u
ra

n
ce

s

Figure 25. Total number of ambiguous solutions for 100 realizations of 15-node
networks in an 8-km by 6-km area, using error-free ranges.

The most telling statistic is how well the algorithm is able to localize the nodes

when compared to the actual positions. This is done by finding the mean error for each

node for a particular solution set. The mean nodal localization error is 5.8 meters with a

maximum of 242 meters. The minimum, mode and median of the localization errors are

all less than one. Figure 26 presents the data as a histogram. It is unclear at this point

why range errors are incurred when the known ranges between nodes are exact. It is

presumed that the maximum number of allowed iterations and acceptance criteria for the

algorithm to not flag an ambiguous solution for another iteration play major roles.

Mean
 11.1
Minimum
 2
Maximum
 64
Median
 8
Mode
 8

 44

Mean Localization Error

0

10

20

30

40

50

60

70

80

1 51 101 151 201 251 301 351 401 451 501

Mean Localization Error (meters)

O
cc

u
ra

n
ce

s

Figure 26. Mean localization error for 100 realizations of 15-node networks in an 8-km
by 6-km area, using error-free ranges.

C. ERROR-INDUCED RANGES

The same analyses that are performed on the error-free realizations are repeated

for ranges that include errors introduced with Equation (6.1). The results of the algorithm

show that in 35 of the node sets no solutions are achieved due to no nodes being within

the maximum cutoff range of both the ‘master’ and ‘on_X’ nodes. The greater number of

node sets that the algorithm was unable to localize is partly due to the fact that the range

errors introduced resulted in a greater number of nodes that had ranges above the 4000-

meter cutoff to the ‘master’ and ‘on_X’ nodes.

As expected, the performance is poorer than in the error-free cases. The mean

number of nodes localized declines to 8.9 nodes per set. Also the number of iterations

required increases to nearly the maximum in almost every simulation, rising to a mean of

47.5 passes. The data are presented in Figures 27 and 28.

Mean
 5.8 m
Minimum
 < 1 m
Maximum
 242 m
Median
 < 1 m

 45

Nodes Found

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nodes

O
cc

u
ra

n
ce

s

Figure 27. Total number of nodes localized for 100 realizations of 15-node networks in
an 8-km by 6-km area, with range errors.

Number of Iterations

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40 45 50

Iterations

O
cc

u
ra

n
ce

s

Figure 28. Total number of iterations for 100 realizations of 15-node networks in an 8-
km by 6-km area, with range errors.

The number of ambiguous solutions also increases over the error-free case. The

mean number of ambiguous solutions increases to 226.2 with a maximum of 4096

ambiguous solutions. Figures 29 shows these results.

Mean
 8.9
Minimum
 3
Maximum
 15
Median
 9
Mode
 11

Mean
 47.5
Minimum
 2
Maximum
 50
Median
 50
Mode
 50

 46

Number of Ambiguous Solutions

0

1

2

3

4

5

6

7

8

9

10

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Ambiguous Solutions

O
cc

u
ra

n
ce

s

Figure 29. Total number of ambiguous solutions for 100 realizations of 15-node
networks in an 8-km by 6-km area, with range errors.

Obviously, the mean best localization per node also increases. The mean value is

511 meters with a maximum of 3811.7 meters. However the median is 312 meters,

meaning that the localization error tends to be less than a quarter of a nautical mile.

Figure 30 summarizes the results.

Mean Localization Error

0

2

4

6

8

10

12

14

16

18

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01
11

01
12

01
13

01
14

01
15

01
M

or
e

Mean Localization Error (meters)

O
cc

u
ra

n
ce

s

Figure 30. Mean localization error for 100 realizations of 15-node networks in an 8-km
by 6-km area, with range errors.

Mean
 226.2
Minimum
 2
Maximum
 4096
Median
 60
Mode
 4

Mean
 511 m
Minimum
 8.8 m
Maximum
 3811 m
Median
 312 m

 47

VII. ST. MARGARET’S BAY EXPERIMENT

In June of 2008, Naval Postgraduate School conducted a test of the firmware

upgrade of the ad hoc discovery scheme developed in [1] at St. Margaret’s Bay, Halifax,

Nova Scotia, Canada as part of the 2008 TTCP Unet sea trials.

A. SETUP

 Nineteen nodes were deployed in this experiment, including a single racom buoy

that served as the master node and which was located near the center of the Seaweb

network. Figure 31 shows the physical components of the Seaweb network. Table 8

tabulates the recorded deployment location of each node as determined by GPS fixes.

Figure 4 shows a chart of St. Margaret’s Bay and the location of each node.

 The water where the nodes were deployed varies from 30 to 70 meters deep, with

the bottom type characterized as sand or gravel. Wind speed was typically less than 8m/s

as observed at CFAV Quest, and shipping traffic was observed to be light.

Seaweb server
(onboard CFAV Quest)

Racom gateway buoy

Seaweb node
(comprising weight, acoustic release,
telesonar modem, and float)

RF, cellular,
and SATCOM link

Acoustic link

Seaweb server
(onboard CFAV Quest)

Racom gateway buoy

Seaweb node
(comprising weight, acoustic release,
telesonar modem, and float)

RF, cellular,
and SATCOM link

Acoustic link

Figure 31. Seaweb network components: Seaweb server, racom gateway buoy, and
Seaweb repeater node (after [1]).

 48

Node ID Position (dd o mm.mmm) Node ID Position (dd o mm.mmm)
3 44 o 35.609N 63 o 59.712W 43 44 o 36.713N 63 o 58.396W

16 44 o 35.400N 63 o 59.500W 44 44 o 37.072N 63 o 58.393W
19 44 o 35.279N 64 o 00.633W 45 44 o 37.347N 63 o 58.483W
20 44 o 35.870N 63 o 59.810W 46 44 o 35.639N 63 o 59.253W
21 44 o 36.350N 63 o 59.900W 48 44 o 34.302N 63 o 59.727W
22 44 o 36.850N 63 o 59.860W 50 44 o 35.747N 64 o 00.316W
23 44 o 37.340N 63 o 59.710W 51 44 o 36.468N 64 o 00.629W
24 44 o 37.810N 63 o 59.440W 52 44 o 37.097N 64 o 00.689W
41 44 o 35.790N 63 o 58.580W 53 44 o 37.694N 64 o 00.904W
42 44 o 36.270N 63 o 58.170W

Table 8. GPS coordinates of 19 nodes involved in June 2008 Seaweb ad hoc network
discovery experiment.

B. ACOUSTIC ENVIRONMENT

Seaweb communications between the acoustic modems occur in the 9-14 kHz

frequency band. Environmental observations during the sea trial, permit analysis of the

communication channel during the experiment.

1. Transmission Loss

As sound energy propagates away from the source, its intensity decreases due to

geometric spreading and attenuation. Geometric spreading is frequency independent and

is best described as wavefront expansion as the sound travels away from the source.

Initially the expansion begins as spherical spreading with intensity decreasing as a

function of the range from the source squared. As the wavefront begins to interact with

the seafloor and surface, and the water medium begins to act as a duct, the spreading

shifts to a cylindrical model where the intensity decreases in proportion to the range from

the source [14].

In addition to geometric spreading, sound energy is also absorbed as it travels

through a medium. The attenuation is due to the conversion of the sound energy into

heat, and the rate at which this conversion takes place is frequency-dependent. As

frequency increases, the rate at which the sound is attenuated increases. Based on work

by Francois and Garrison in [17 and 18], the expected rate at which sound attenuation

 49

occurs in the ocean at Seaweb frequencies is approximately 1 dB/km. Figure 32 shows

the operating frequencies of Seaweb and the corresponding attenuation coefficient.

Figure 32. Attenuation coefficient  in dB/km versus transmission frequency in kHz,
based on Francois and Garrison [17 and 18] for salinity S = 35 ppt, acidity pH = 8,

and depth D = 50 m.

2. Noise Level

The background noise levels in the ocean have several major constituents that

each contribute differently depending on the frequency of interest. At very low

frequencies, below 20 Hz, the noise is dominated by tidal and wave noise. From 20 Hz to

500 Hz, man-made shipping noise is the main contributor. At 500 Hz, wind noise is

dominant until approximately 100 kHz, when thermal noise dictates the background noise

levels [14]. Thus, at the Seaweb operating frequencies, wind-driven noise is the main

component of the background noise. This is seen in Figure 33 derived from Coates [19].

 50

Figure 33. Noise spectrum level based on empirical formula by Coates (after [19]).
NLwind is for 5 m/s (10 kts) wind speeds.

Since wind-driven noise is the limiting component of the total background noise

in the frequency range of interest for Seaweb, and the wind noise is dependent on the

wind speed, Coates’ formulas can be expounded upon to give Figure 34. This figure

demonstrates the variation in noise level with wind speed. From the figure it is estimated

that 50 dB re 1 Pa ambient noise existed at the operating frequencies of Seaweb for the

wind speeds observed during the trial.

 51

Figure 34. Effect of surface wind speed on noise spectrum level based on empirical
formulae by Coates (after [19]).

3. Multipath Propagation

As discussed in Chapter III, the shape of the vertical sound speed profile dictates

the path that sound travels from the source. Figure 35 shows the sound-speed profiles

taken at the outset and prior to the conclusion of the trial near the gateway node. The

average sound-speed profile is analyzed using code from Torres [20] that determines the

channel impulse response based on eigenray traces employing a Bellhop Gaussian beam-

tracing propagation model. Figure 36 shows the results for nodes at 55 meters in depth at

a frequency of 12 kHz, in 57 meters of total water depth. These figures demonstrate that

the direct-path arrivals are greater in amplitude than any multipath, and therefore the

matched filter used by Seaweb to measure node-to-node ranges should be effective at

determining the direct-path arrivals.

 52

0

10

20

30

40

50

60

1450 1460 1470 1480 1490 1500

Sound Speed (m/s)

D
ep

th
 (

m
)

SSP01
SSP03
Averaged

Figure 35. Sound-speed profiles from St. Margaret’s Bay.

146014801500

0

10

20

30

40

50

60

Sound Speed (m/s)

D
ep

th
 (

m
)

Sound Speed Profile

0 200 400 600 800 1000

0

10

20

30

40

50

Range (m)

D
ep

th
 (

m
)

BELLHOP- Jun 2008 Halifax Trial (Averaged SSP)

0.68 0.7 0.72 0.74 0.76 0.78 0.8
0

1

2
x 10

-3

Time (s)

A
m

p
lit

u
de

Channel Impulse Response

146014801500

0

10

20

30

40

50

60

Sound Speed (m/s)

D
ep

th
 (

m
)

Sound Speed Profile

0 1000 2000 3000 4000

10

20

30

40

50

Range (m)

D
ep

th
 (

m
)

BELLHOP- Jun 2008 Halifax Trial (Averaged SSP)

2.74 2.745 2.75 2.755 2.76 2.765
0

2

4
x 10

-4

Time (s)

A
m

p
lit

u
d

e

Channel Impulse Response

Figure 36. Bellhop eigenray traces for June 2008 St. Margaret’s Bay trial show a
downward-refracting channel with multipath propagation. Direct-path arrivals are

in red. Left: 1 km spacing. Right: 4 km spacing. Note the time-scale and
amplitude-scale changes on the channel impulse response plots.

 53

C. DATA

The Seaweb experiments of interest in St. Margaret’s Bay were conducted June

23 thru June 25, 2008. During this time the ad hoc discovery method of Ong [1] was

exercised on five separate occasions. The node-to-node range measurements were saved

into separate files for each discovery process, and all of these files were input into the

localization algorithm for analysis. Node 3 was the racom buoy and master node. For

the analysis, node 20 was selected as the ‘on_X’ node for its proximity to the master node

and due to it having a large number of neighboring nodes. Figure 37 plots the node

locations as determined by GPS at the time of deployment relative to the ‘master’ node.

This figure corresponds to Figure 4, which shows the charted positions of the nodes.

Figure 38 plots the same node locations with the axes rotated such that ‘on_X’ node lies

on the x-axis.

-2000 -1000 0 1000 2000
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

3

20

16
19

21

22

23

24

41

42

43

44

45

46

48

50

51

52

53

Actual Node Locations

x-axis (m)

y-
ax

is
 (

m
)

Figure 37. Locations of St. Margaret’s Bay nodes referenced to node 3.

 54

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

3 20
16

19

21

22

23

24
41

42 43
44 45

46

48 50 51
52 53

Rotated Actual Node Locations

x-axis (m)

y-
ax

is
 (

m
)

Figure 38. St. Margaret’s Bay network rotated with node 3 as the ‘master’ node and node
20 as the ‘on_X’ node.

D. RESULTS

Using the range data from the five ad hoc discoveries, the algorithm converges the

node locations to within 25 meters in six iterations. The algorithm produces 16

ambiguous solutions. The ambiguous solution that is closest to the actual node positions

is solution 71936, which has a mean nodal position error of 80.8 meters. Figure 39 plots

the locations of this solution. Appendix B contains plots for all of the ambiguous

solutions that are generated.

Additionally an analysis for redundancy is conducted. Using a 25-meter threshold

between each node location to call an ambiguous solution redundant, two of the solutions

are declared redundant. Namely, ambiguous solution 4096 is redundant to solution 2048

and solution 67480 is redundant to solution 71936, which is the solution with the smallest

mean nodal localization error.

 55

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 71936 Node Locations

20
16

19

21
22

23

24
41

42 43
44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

Figure 39. Ambiguous solution exhibiting the smallest mean error per node (80.8 m)
compared with the recorded node locations.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

VIII. HORTEN EXPERIMENT

A second experiment was conducted off the coast of Horten, Norway in

September 2008, but on a smaller scale with fewer nodes and a smaller area. The

network deployment area, as seen in Figure 40, was approximately 500 meters by 600

meters and includes nine nodes. Due to the shallow bathymetry and sound speed profile

that resulted in most of the sound energy being refracted to the boundaries during the

trial, the maximum acoustic range was limited to less than 1500 meters. During the

experiment, 32 ad hoc discoveries were conducted over the course of six days. Node 3

was the racom buoy and ‘master’ node, and node 10 is selected as the ‘on_X’ node for

analysis.

Figure 40. Horten Seaweb network layout (from [1]).

 58

The algorithm yields two ambiguous solutions, the better of which has a mean

node localization error of 35.7 meters and requires three iterations for the solutions to

converge. Figure 41 displays the node locations translated such that node 3 is the origin

and node 10 is on the x-axis. Figure 42 shows the two ambiguous solutions, of which

ambiguous solution 0 is the more accurate one. A visual comparison of solution 0 to the

rotated actual node locations reveals that the solution for node 21 is farther away from the

‘master’ node than the actual location. This follows the general assumption from Chapter

III, that the measured ranges will typically exceed the actual ranges, and that these errors

compound as the distance from the master node increases.

-100 0 100 200 300 400 500
-100

0

100

200

300

400

500

600

3 10

11

13

14

20

21

30

31

Rotated Actual Node Locations

x-axis (m)

y-
ax

is
 (

m
)

Figure 41. Horten experiment nodes rotated with node 3 as the ‘master’ node and node
10 as the ‘on_X’ node.

 59

0 200 400 600
-600

-400

-200

0

200

400

600

3

Ambiguous Solution 0 Node Locations

10

11

13

14

20

21

30

31

x-axis (m)

y-
ax

is
 (

m
)

0 200 400 600
-600

-400

-200

0

200

400

600

3

Ambiguous Solution 64 Node Locations

10

11

13

14

20

21

30

31

x-axis (m)

y-
ax

is
 (

m
)

Figure 42. Ambiguous solutions of the Norway sea trial data.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

IX. CONCLUSIONS

A. SUMMARY OF RESULTS

The Seaweb ad hoc discovery process provides node-to-node range measurements

that can be used to localize the positions of the network nodes. The results from the

synthetic data and experimental data demonstrate that the algorithm implemented in this

thesis is capable of localizing the nodes of a Seaweb network. This is especially

important for sensor nodes, for which geo-localization is vital to operationally exploit the

sensor data gathered.

B. RECOMMENDATION

In view of the fact that the algorithm is capable of localizing nodes, it should be

added to the Seaweb field kit. It should be further refined and tested, with the eventual

goal of incorporating it into the master node for automated operations.

C. FURTHER RESEARCH

The opportunities for further research stemming from this thesis fall into two

broad categories, improving the algorithm to make it more accurate and efficient and

having the algorithm interact with the Seaweb network to provide better data input by

using system feedback.

1. Pruning Ambiguous Solutions

An improvement would be for the algorithm to selectively determine which

unknown node should be evaluated first after the ‘master’ and ‘on_X’ nodes have been

localized. The candidates for the third node would require ranges to both the ‘master’

and ‘on_X’ nodes. The recommended criteria for selecting the best third node from those

that qualify would be the node that has the most ranges to other nodes also having ranges

 62

to the ‘master’ and ‘on_X’ nodes. The benefit would be that secondary nodes chosen in

this manner would not have ambiguous solutions. This would reduce the total number of

ambiguous solutions.

Another improvement that would reduce the number of ambiguous solutions is to

incorporate operator-provided constraints on the network geometry, such as boundaries,

shorelines and known node locations. These constraints could be used to test

hypothetical solutions.

2. System Feedback

When the algorithm processes the range data, it is unable to localize any node that

has only a single range to known node. To proactively localize these single-range nodes,

the algorithm could request of the Seaweb operator that these nodes issue another

broadcast ping in an attempt to measure a range to a second known node. The new

broadcast ping could be at a higher power level to attempt to overcome background

noise, or the system could wait some time interval to allow noise levels and propagation

conditions to improve. This same principle could also be applied to nodes having

ambiguous solutions. If a third range is found to a known node, the solution becomes

exact and eliminates the ambiguity.

The use of a mobile node, such as a UUV or simply a repeater node hung over the

side of a ship, provides many avenues for augmenting the range data which are delivered

to the algorithm. Assuming the mobile node is capable of determining its own location

via GPS, it is an ideal choice as the ‘on_X’ node, because all of the nodes could be geo-

localized once the algorithm was complete. The mobile node could also be used to

eliminate ambiguous solutions by positioning itself as a known node such that a third

range would be available for otherwise ambiguous node solutions. For nodes that have

only a single range to a known node, the mobile node could provide ranges from multiple

stations. The mobile node could also search for nodes that were deployed but not

discovered. To accomplish this, the mobile node could transit to areas where the

localization failed to show a node and conduct broadcast pings.

 63

The program Stack_Sift.m could also be modified to detect the migration of nodes

over time. Nodes could potentially be moved by bottom-trawling fishermen which would

alter the node layout. If the Stack_Sift.m function noted a persistent change in the ranges

between nodes, it could either request a complete repeat of the ad hoc discovery process

to reset all of the ranges for every node, or it could begin to use the new ranges and

disregard the old ones.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX A: ALGORITHM

Gen_Solver.m

function [b,c,d,e] = Gen_Solver (source)
%LT Dave Zinkhon 22 Sep 08
 %Main Program
 % 02 Oct 08 - Revised to match Soultion_Type_2 using node and range
 % data to determine solution type to use, and
eliminated
 % the know_third portion
 % 08 Oct 08 - Revised to allow for storage of any possible mirror
solutions
 % that could be encountered

 % Split local_positions into 2 matrixes that could hold
 % 2^(num_nodes-2) possibilities (maximum possible
number of
 % mirrors)

 % Moved master and on_X nodes to top of all matrixes by
 % calling function Reorder

 % 15 Oct 08 - started using active_branches to identify which
splits were
 % being used (identified by decimal number)
 % 18 Feb 08 - revamped to analyze Generated nodes

%clear all
%clc
%close all

global X_positions;
global Y_positions;
global ranges;
global num_of_nodes;
global master_branch;
global active_branches;

ranges = source;

%seeds active_branches with first branch (0)
active_branches = 0;

%determine number of nodes for loop control
num_of_nodes = length (ranges(1,:))-1;

%create array for storage of positions in local reference frame
 %1st column is node number, each column is then possibility for
mirror

 66

X_positions = zeros (num_of_nodes+1 , 2^(num_of_nodes-2)+1);

for i = 1:num_of_nodes
 X_positions (i+1,1) = ranges (i+1,1);
end

%fills in unknown data and column headers with NaN's
for i = 2:length(X_positions(1,:))
 X_positions (:,i) = NaN;
end
X_positions(1,1) = NaN;

%Y_position matrix is identical in setup to X_positions
Y_positions = X_positions;

%this is used to track which branches are currently being used and
which
 %branches even exist
master_branch = zeros (num_of_nodes+1, 2);
master_branch(:,1) = X_positions(:,1);
master_branch(1,2) = NaN;

%set master node to origin and on_X position to range from master to
on_X
 %master
X_positions (2,2) = 0;
Y_positions (2,2) = 0;
 %on_X
X_positions (3,2) = ranges (3,2);
Y_positions (3,2) = 0;

%change_local used to keep program running if the has been a new node
 %solved in the local positions matrix
change_local = 1;

%passes used to track the number of times the program loops to
determine
 %local_positions with precision of .01 meters (note: this may not
be
 %accurate to actual positions)
%%
passes = 0;

while change_local>0 && passes < 100
 change_local = 0;
 passes = passes+1;

 for n = 4:num_of_nodes+1

%determine which solution type to use (Matrix or Law of Cosines)

 soln = Solution_Type_3(n);

 67

 if soln <= 1 %insufficient range data for solution
 % disp (['Pass: ',num2str(passes),', For node: ',
num2str(X_positions (n,1))])
 % disp('Cannot solve this node due to an insufficient
number of ranges.')

 elseif soln == 2 %mirror image due to only two ranges
 % disp (['Pass: ',num2str(passes),', For node: ',
num2str(X_positions (n,1))])
 % disp ('This point has a mirror image due to only
having two ranges.')
 change_local = change_local + Cosines_Approach_3 (n);

 % X_positions
 % Y_positions
 % active_branches

 else %enough data to find location exactly
 change_local = change_local + Matrix_Approach_3 (n);

 % X_positions
 % Y_positions
 % active_branches

 end

 end
 disp(['Completed pass: ',num2str(passes)])
end

b = X_positions;
c = Y_positions;
d = active_branches;
e = passes;

Stack_Build.m

function b = Stack_Build (nodes, master, on_x, source)
% LT Dave Zinkhon 13 Jan 2009
 %program to load data layers a place in stack for reduction by
Stack_Sift

%Inputs
% nodes - vector numbered addresses of all nodes in the field
% master - address of node that will be used as geographic reference
for
% solutions. All solutions will have this node located at
(0,0)
% on_x - address of node that will placed at a known bearing from
master.

 68

% All solutions will have this node at (Range (master-
>on_x),0)
% source - matrix containing names of .txt files containing range
data

%Output
% b - 3-D stack of node-to-node range data that can then be analyzed
to
% eliminate outliers in the data (Stack_Sift)

num_nodes = length(nodes); %number of nodes deployed (allows creating
array beforehand)
num_files = length(source(:,1)); %number of files to be loaded
 %Same as numbers of layers in the
cube
template = zeros (num_nodes+1); %template will be used to ensure
each layer of stack matches
Stack = zeros (num_nodes+1,num_nodes+1,num_files);

for i = 1:num_nodes %places node names in row and column headers
 template (1,i+1) = nodes(i);
 template (i+1,1) = nodes(i);
end

%move master to front position of rows & columns
 loc = find (template(1,:)== master); %returns column index of
master node
 template (1,loc) = template (1,2); %moves node in first position
to master's position
 template (loc,1) = template (2,1); %same for rows
 template (1,2) = master; %moves master to 1st position
 template (2,1) = master; %same for rows

%move on_x to 2nd position in rows and columns
 loc = find (template(1,:)== on_x); %returns column index of on_x
node
 template (1,loc) = template (1,3); %moves node in first position
to on_x's position
 template (loc,1) = template (3,1); %same for rows
 template (1,3) = on_x; %moves on_x to 1st position
 template (3,1) = on_x; %same for rows

for d = 1:num_files
 name = source(d,:);
 data = load (name); %name of file to be loaded (must be full)

 layer = template;

 for i = 1:length(data(:,1))
 src = data(i,1); %determines source node
 for j = 2:length(data(1,:))
 if rem(j,2)==0
 rcvr = data(i,j); %determines receiver node

 69

 rng = data (i,j+1); %determines range between source
and rcvr

 %find proper row and column in ranges to store data
 row = find(layer(:,1)== src);
 col = find(layer(1,:)== rcvr);
 if rcvr == 0 %prevents overwriting row headers
 row = 1;
 col = 1;
 end
 layer(row,col) = rng; %store range data
 end
 end
 end

 Stack(:,:,d) = layer;
 %Stack(1,1,d) = d;
 %range cube has raw ranges from each data run stacked over time
end

b = Stack;

Stack_Sift.m

function b = Stack_Sift (Stack)
% LT Dave Zinkhon 13 Jan 2009
 %program to load remove extraneous data from node to node ranges in
 %Stack passed in
 %weight array is used to zero weight any data that is outside 10%CI
of mean (1.645 standard deviations)
 %For the output, a NaN will appear in any Range slot that does not
have any good ranges including along the diagonal

num_nodes = length(Stack(1,:,1))-1; %number of nodes in field
num_files = length(Stack(1,1,:)); %height of data stack

ranges = zeros(2* num_files,1); %stores node to node ranges down
stack
weights = zeros(2* num_files,1); %stores weights for data removal (0
or 1)

Good_Ranges = zeros(num_nodes+1, num_nodes+1); %output matrix
Good_Ranges(1,:) = Stack (1,:,1);
Good_Ranges(:,1) = Stack (:,1,1);
%count = 0

%Portion for sorting bad ranges out of good for entire cube
 %Good_Ranges will contain mean of usable ranges for output to
Main.m
for i = 2:num_nodes+1
 for j = 2:num_nodes+1

 70

 for d = 1:num_files %retrieve all data
 ranges(d) = Stack (i,j,d); %stores a->b range
 ranges(length(ranges)-d+1) = Stack(j,i,d); %stores b->a
range
 end

 for d = 1:length(weights)
 if ranges(d) > 1 %assign weight if positive range exists
 weights(d) = 1;
 else
 weights(d) = 0;
 end
 end

 worst = .00001; %net > zero to get initial entry to loop
 worst_loc = 0;
 while worst == .00001
 rXw = ranges .* weights;
 mean = sum(rXw)/sum(weights); %mean of ranges still in
use

 tot = 0;
 for a = 1:length(ranges)
 tot = tot + ((ranges(a) - mean)^2) * weights(a);
 end

 dev = sqrt(tot/(sum(weights)-1)); %stand dev of ranges
still in use

 for a = 1:length(ranges)
 if weights(a) == 1 %only look at ranges still being
weighted
 if abs(ranges(a)-mean) > 1.645*dev %check if
outside CI
 if abs(ranges(a)-mean) > worst %check to see
if furthest outside mean
 worst = abs(ranges(a)-mean);
 worst_loc = a;
 end
 end
 end
 end

 if worst_loc > 0 %eliminate range outside CI
 weights(worst_loc) = 0; %set weight to zero (removes
range)
 worst_loc = 0; %resets worst location
 worst = .00001; %ensures will run through while loop
again
 else
 worst = 0; %no range outside CI => exist while loop
 end
 end

 71

 Good_Ranges(i,j) = mean; %stores mean of remaining ranges
 Good_Ranges(j,i) = mean;
 Good_Ranges(1,1) = NaN; %puts a Nan in upper left
 %count = 0
 end
end

b = Good_Ranges;

Data Analysis / Creation

Halifax_Analysis

%LT Dave Zinkhon 8 Mar 2008
 %Halifax Analysis
 %Used to find solutions to Halifax ad hoc data
 %The quantities saved for each iteration are:
 %number of passes required to get results
 %number of nodes that have solutions
 %number of ambiguous solutions
 %smallest total range difference between actual node locations
and
 %the solution for any ambiguous solution

close all
clc

r=1;

Stack = Stack_Build(in_nodes, master, on_X, Halifax_Source);

Shift_Result = Stack_Sift (Stack);

[X_positions, Y_positions, active_branches, passes] = Gen_Solver
(Shift_Result);

%Statistic Collection for number of passes, number of ambiguous
 %solutions, number of nodes not localized
tot_passes(r) = passes;

NaN_nod_sol = 1-isnan(X_positions(:,2));
nod_sol(r) = sum(NaN_nod_sol);

ambig(r) = length(active_branches);

 72

%%%%%Comparison of solutions to Actual Locations
Rotate_Original_Nodes %rotates source nodes for comparison (master =
0,0...

%take only non-NaN solutions from X_positions and Y_positions
X_quick_ref = zeros(length(X_positions(:,1)),
length(active_branches)+1);
X_quick_ref(:,1) = X_positions(:,1);

Y_quick_ref = X_quick_ref;

for i = 1:length(active_branches)
 col = active_branches(i)+2;
 X_quick_ref(:,i+1) = X_positions(:,col);
 Y_quick_ref(:,i+1) = Y_positions(:,col);

end

for i = 2:length(active_branches)+1
 er_tot = 0;
 NaN_branch = 1-isnan(X_quick_ref(:,i));
 for j = 2:length(X_quick_ref(:,1))

 if NaN_branch(j) == 1 %find tot range error from actual to
active branch
 x_er = abs(rotated_nodes(j-1,2)-X_quick_ref(j,i));
 y_er = abs(rotated_nodes(j-1,3)-Y_quick_ref(j,i));
 er_tot = er_tot + sqrt (x_er^2 + y_er^2);
 end

 end
 min_er(i-1) = er_tot;
end

 Best_Error(r) = min(min_er);

%%%%%Attempt to remove redundant ambiguous solutions
redundant = 0;
for i = 2:length(X_quick_ref(1,:))
 not_redundant = 0;
 for k = i+1:length(X_quick_ref(1,:))
 for j = 2:length(X_quick_ref(:,1))
 if (abs(X_quick_ref(j,i) - X_quick_ref(j,k)) >=17) &&
(abs(Y_quick_ref(j,i) - Y_quick_ref(j,k)) >=17)
 not_redundant = not_redundant + 1;
 end
 end

 if not_redundant < 1 && i~=k
 redundant(i,k) = 1;
 else

 73

 redundant(i,k) = 0;
 end
 end
end

tot_redundant(r) = sum(sum(redundant));

Error_Free

%LT Dave Zinkhon 8 Mar 2008
 %Error Free
 %Used to rune multiple iterations of error free generated nodes for
 %statistical analysis
 %The quantities saved for each iteration are:
 %number of passes required to get results
 %number of nodes that have solutions
 %number of ambiguous solutions
 %smallest total range difference between actual node locations
and
 %the solution for any ambiguous solution

clear all
close all
clc

runs = 50; %number of node sets that are to be analyzed

for r = 1:runs
 r
 %program that will create nodes for analysis
 Point_Gen_Gaus_for_Stack

 Shift_Result = Stack_Sift (Stack);

 [X_positions, Y_positions, active_branches, passes] = Gen_Solver
(Shift_Result);

 %Statistic Collection for number of passes, number of ambiguous
 %solutions, number of nodes not localized
 tot_passes(r) = passes;

 NaN_nod_sol = 1-isnan(X_positions(:,2));
 nod_sol(r) = sum(NaN_nod_sol);

 ambig(r) = length(active_branches);

%%%%%Comparison of solutions to Actual Locations
 Rotate_Original_Nodes %rotates source nodes for comparison
(master = 0,0...

 74

 %take only non-NaN solutions from X_positions and Y_positions
 X_quick_ref = zeros(length(X_positions(:,1)),
length(active_branches)+1);
 X_quick_ref(:,1) = X_positions(:,1);

 Y_quick_ref = X_quick_ref;

 for i = 1:length(active_branches)
 col = active_branches(i)+2;
 X_quick_ref(:,i+1) = X_positions(:,col);
 Y_quick_ref(:,i+1) = Y_positions(:,col);

 end

 for i = 2:length(active_branches)+1
 er_tot = 0;
 NaN_branch = 1-isnan(X_quick_ref(:,i));
 for j = 2:length(X_quick_ref(:,1))

 if NaN_branch(j) == 1 %find tot range error from actual to
active branch
 x_er = abs(rotated_nodes(j-1,2)-X_quick_ref(j,i));
 y_er = abs(rotated_nodes(j-1,3)-Y_quick_ref(j,i));
 er_tot = er_tot + sqrt (x_er^2 + y_er^2);
 end

 %if er_tot < min_er %store smallest total error for any
ambiguous soln
 % min_er = er_tot;
 % soln = i;
 %end
 end
 min_er(i-1) = er_tot;
 end

 Best_Error(r) = min(min_er);

end

Point_Gen_for_Stack

%LT Dave Zinkhon 7 Aug 08
 %Creating points in Range Area
 %Determining ranges between points
 %Plotting points within area

 %22 Aug 08 - changed ranges format to match format created when
inputting data

 75

 %24 Sep 08 - updated to put Gaussian (mu,s) range error in ranges
 %17 Feb 09 - changed to create stack of ranges for testing sifter
 %09 Mar 09 - changed how randomness was added to make
 % r(report) = r(actual)*a + b
 % a = normrnd(1,.1)
 % b = b = (.05*ranges)*chi2rnd(1) note:chisqr(1) has mean of
1

w = 5000; %width of area (x) in meters
l = 5000; %length of area (y) in meters
num_of_nodes = 5; %number of nodes in area
mu = 1; %mean of range offset
s = .1; %standard dev of offset
layers = 50; %number of routes run by ad-hoc network
max_range = 4000; %maximum range that would be calculated/received by
network

nodes = zeros(num_of_nodes,3); %array for storing node location

for i = 1:num_of_nodes %loop to put node #, x-location, y-
location
 nodes(i,1) = i;
 nodes(i,2) = unidrnd(w);
 nodes(i,3) = unidrnd(l);
end

ranges = zeros (num_of_nodes+1); %array for storing node to node
ranges

for i = 1:num_of_nodes %makes row and column headers
 ranges (i+1,1) = i;
 ranges (1,i+1) = i;
end

%loop to determine ranges, normrnd component will result in range from
1 to 2
 %to be different from 2 to 1 to simulate differences expected in
real data
for i = 1:num_of_nodes
 for j = 1:num_of_nodes
 ranges(i+1,j+1) = sqrt((nodes(i,2)-nodes(j,2))^2+(nodes(i,3)-
nodes(j,3))^2);
 end
end

for i = 1:length(ranges(1,:)) %places NaN's along diagonal
 for j = 1:length(ranges(:,1))
 if i==j
 ranges (i,j) = NaN;
 end
 end
end

%figure (1) %plots each individual point within range specified

 76

% plot (nodes(:,2),nodes(:,3), 'bo');
% axis([0,w,0,l])

%Build Stack here

Stack = zeros (num_of_nodes+1,num_of_nodes+1,layers);

%put headers on each column/row
for k = 1:layers
 Stack(1,:,k) = ranges (1,:);
 Stack(:,1,k) = ranges (:,1);
end

for k = 1:layers
 for i = 1:num_of_nodes
 for j = 1:num_of_nodes
 Stack(i+1,j+1,k) =
ranges(i+1,j+1)*normrnd(mu,s)+(.05*ranges(i+1,j+1))*chi2rnd(1);

 if Stack(i+1,j+1,k) > max_range
 Stack(i+1,j+1,k) = NaN;
 end

 %ensures that range exists between master and on_X
 if i+1==3 && j+1==2
 Stack (i+1,j+1,k) =
ranges(i+1,j+1)*normrnd(mu,s)+(.05*ranges(i+1,j+1))*chi2rnd(1);
 end

 if i+1==2 && j+1==3
 Stack (i+1,j+1,k) =
ranges(i+1,j+1)*normrnd(mu,s)+(.1*ranges(i+1,j+1))*chi2rnd(1);
 end

 end
 end
end

clear l w i j num_of_nodes a b mu s k layers max_range

Rotate_Original_Nodes.m

%LT Dave Zinkhon 22 OCT 08

%%
%Translating and rotating generated points to local axis

master = 3; %added for generated points
on_X = 20;

 77

m = find (nodes(:,1) == master);
p = find (nodes(:,1) == on_X);

x_off = nodes(m,2);
y_off = nodes(m,3);

offset_nodes = nodes;

num_of_nodes = length(nodes(:,1));

ranges = zeros (num_of_nodes+1); %array for storing node to node
ranges

for i = 1:num_of_nodes %makes row and column headers
 ranges (i+1,1) = in_nodes(i);
 ranges (1,i+1) = in_nodes(i);
end

for i = 1:num_of_nodes %loop to determine ranges
 for j = 1:num_of_nodes
 ranges(i+1,j+1) = sqrt((nodes(i,2)-nodes(j,2))^2+(nodes(i,3)-
nodes(j,3))^2);
 end
end

for i = 1:length(ranges(1,:)) %replaces 0's with NaN's
 for j = 1:length(ranges(:,1))
 if ranges (i,j) == 0
 ranges (i,j) = NaN;
 end
 end
end

%%

for i = 1:length(nodes(:,1))
 offset_nodes (i,2) = nodes(i,2) - x_off;
 offset_nodes (i,3) = nodes(i,3) - y_off;
end
%%
opp = offset_nodes(p,3);
adj = offset_nodes(p,2);

%possible scenarios for quadrants for on_X position to master

rot = atan2(opp,adj);
if rot < 0
 rot = rot+2*pi;
end

rotated_nodes = offset_nodes;

 78

for i = 2:length(nodes(:,1))
 theta_o = atan2(offset_nodes(i,3),offset_nodes(i,2));
 if theta_o < 0
 theta_o = theta_o + 2*pi;
 end
 rotated_nodes (i,2) = ranges(i+1,2)*cos(theta_o-rot);
 rotated_nodes (i,3) = ranges(i+1,2)*sin(theta_o-rot);
end

figure (2) %Given (known) positions
for i = 1:length(rotated_nodes)
 if i == 1
 plot (rotated_nodes(i,2),rotated_nodes(i,3),
'bv','MarkerFaceColor',[0 0 1]);
 node_name = num2str(rotated_nodes(i,1));
 text(rotated_nodes(i,2)+10,rotated_nodes(i,3)+10,{node_name});
 else
 plot (rotated_nodes(i,2),rotated_nodes(i,3), 'b.',
'MarkerSize',15);
 node_name = num2str(rotated_nodes(i,1));
 text(rotated_nodes(i,2)+10,rotated_nodes(i,3)+10,{node_name});
 end

 hold on
end
title ('Rotated Actual Node Locations');
xlabel ('x-axis (m)');
ylabel ('y-axis (m)');
grid on
axis equal tight
axis([-3000, 5000, -2500, 1500])

hold off

clear p x_off y_off offset_nodes opp adj rot

Functions called by other programs

Reorder_3.m

function Reorder_3 (master, on_X)

%LT Dave Zinkhon 8 OCT 08
 %This function will move the master and on_X nodes to the top of
all
 %matrixes to ease understanding and reduce loop iterations required
in
 %the Main_3

%20 Oct 08 - Revise due to error found if one of "known" nodes was
already
 %in first two rows

 79

global ranges;

%stores data in first rows
store_1st = ranges(2,:);

%finds which rows previously held master node
m = find (ranges(:,1) == master);

%move master and on_X ranges data to top row
ranges(2,:) = ranges(m,:);

%move top row data to original master row
ranges(m,:) = store_1st;

%move column order to match row order

%stores data in first and second columns
store_1st = ranges(:,2);

%move master and on_X ranges data to 1st two columns
ranges(:,2) = ranges(:,m);

%move top two row data to original master and on_X rows
ranges(:,m) = store_1st;

%Repeat for on_X node
store_2nd = ranges(3,:);
n = find (ranges(1,:) == on_X);
ranges(3,:) = ranges(n,:);
ranges(n,:) = store_2nd;
ranges(:,3) = ranges(:,n);
store_2nd = ranges(:,3);
ranges(:,n) = store_2nd;

Solution_Type_3.m

function solution = Solution_Type_3 (n)
%LT Dave Zinkhon 19 SSEP 08
 %writing logic to determine if law of cosines should be used or
Matrix
 %Solution should be used
 %O/P is matrix stating which type of method should be used to find
location
 %2 Oct 08 - Modified to test based on known nodes and ranges vice
just
 %known ranges, For use in Main_2
 %8 Oct 08 - Modified for Main_3 to match new data structure

global ranges;

 80

global X_positions;

%solution = <1 means cannot determine anything (single range available)
%solution = 2 means have two ranges and will use law of cosines (Find
Locally)
%solution >= 3 means have 3 or more ranges and will use matrix solution

R = isnan(ranges(:,n));%logic test for NaN's in ranges
LN = isnan(X_positions(:,2));%logic test for NaN's in nodes
corr = R+LN; %if result is zero, means is range to known position

usable = find (corr==0); %array that know which nodes are usable

solution = length (usable);

Bin_to_Dec.m

function dec = Bin_to_Dec_Converter (branch)

%LT Dave Zinkhon 8 Oct 08

 %This function will take the position within a branch
 %variables and convert them into a base10 number that will be
used
 %to store the node locations in the proper column of
X_positions
 %and Y_positions

global master_branch;

%b is used to reverse value of exponent as i increases
b = length (master_branch(:,1));

dec = 0;
for i = 2:length (master_branch(:,1))
 a = branch(i,2) * (2^(b-i));
 dec = dec + a;
end

Dec_to_Bin.m

function bin = Dec_to_Bin_Converter (dec)

%LT Dave Zinkhon 8 Oct 08

 %This function will take the position within a branch
 %variables and convert them into a base10 number that will be
used
 %to store the node locations in the proper column of
X_positions

 81

 %and Y_positions

global master_branch;

%b is used to reverse value of exponent as i increases
b = length (master_branch(:,1));

bin = master_branch;

for i = 2:length (master_branch(:,1))
 if (2^(b-i)) <= dec %places a one in appropriate node
 dec = dec - 2^(b-i);
 bin (i, 2) = 1;
 else
 bin (i, 2) = 0; %else place a zero (ensures overwriting)
 end
end

Cosines_Approach_3.m

function change = Cosines_Approach_3 (n)
%%
%LT Dave Zinkhon 8 Aug 08
 %Takes ranges from Point_Gen plots them in local reference frame
 %19 Sep 08 - Modified to only work for 2 known ranges, Matrix
approach
 %will be taken for 3 known ranges solution (Matrix
 %Approach)
 %22 Sep 08 - Removed plotting function and moved to
Martix_Approach.m)
 %24 Sep 08 - formatted to function for use in Main_1
 %15 Oct 08 - altered for use in Main_3, using branch tracking,
 %separate X and Y position tracking
 %23 Oct 08 - replaced elseif atan portion with atan2 function

global X_positions;
global Y_positions;
global ranges;
global master_branch;
global active_branches;

%length is determined prior to executing loop to prevent unnecessary
 %looping if active_branches is added to during loop
length_active_branches = length(active_branches);

for i = 1:length_active_branches
%%
%points to proper column for given branch number
 branch_col = active_branches(i)+2; %+2 aligns to proper column
number
 branch = Dec_to_Bin_Converter (active_branches(i));
%%

 82

%Logic tests to determine which nodes are being referenced
 R = isnan(ranges(:,n));%logic test for NaN's in ranges
 LN = isnan(X_positions(:,branch_col));%logic test for NaN's in
nodes
 corr = R+LN; %if result is zero, means is range to known
position

 usable = find (corr==0); %array that know which nodes are usable

%%
if length(usable)>=2

%used to track when changes are made to position matrixes
 prior_x = X_positions (n,branch_col);
 prior_y = Y_positions (n,branch_col);
%%
%Calculation of what rotation is required about local axis
 if X_positions(usable(2),branch_col) >
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col)
> Y_positions(usable(1),branch_col)
 theta_axis = atan((Y_positions(usable(2),branch_col) -
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) -
X_positions(usable(1),branch_col)));
 elseif X_positions(usable(2),branch_col) <
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col)
> Y_positions(usable(1),branch_col)
 theta_axis = pi() + atan((Y_positions(usable(2),branch_col) -
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) -
X_positions(usable(1),branch_col)));
 elseif X_positions(usable(2),branch_col) <
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col)
< Y_positions(usable(1),branch_col)
 theta_axis = pi() + atan((Y_positions(usable(2),branch_col) -
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) -
X_positions(usable(1),branch_col)));
 elseif X_positions(usable(2),branch_col) >
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col)
< Y_positions(usable(1),branch_col)
 theta_axis = atan((Y_positions(usable(2),branch_col) -
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) -
X_positions(usable(1),branch_col)));
 elseif X_positions(usable(2),branch_col) ==
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col)
> Y_positions(usable(1),branch_col)
 theta_axis = pi()/2;
 elseif X_positions(usable(2),branch_col) ==
X_positions(usable(1),branch_col) &&
Y_positions(usable(2),branch_col)<Y_positions(usable(1),branch_col)
 theta_axis = -pi()/2;
 elseif X_positions(usable(2),branch_col) >
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col)
== Y_positions(usable(1),branch_col)
 theta_axis = 0;
 else
 theta_axis = -pi();

 83

 end
%%
%This is where calculation is done based on law of cosines to find
third
 %point
top = ranges(usable(1),n)^2 + ranges(usable(1),usable(2))^2 -
ranges(usable(2),n)^2;
bot = 2 * ranges(usable(1),n) * ranges (usable(1),usable(2));
theta_tri = acos (top/bot);

%%
 if branch(n,2) == 0
%Left side solution
 X_positions (n,branch_col) = X_positions (usable(1),branch_col)
+ ranges(usable(1),n) * cos(theta_axis+theta_tri);
 Y_positions (n,branch_col) = Y_positions (usable(1),branch_col)
+ ranges(usable(1),n) * sin(theta_axis+theta_tri);

%now shift to new alternative column (if applicable) for right side
solution
 branch(n,2) = 1;
 new_branch_num = Bin_to_Dec_Converter(branch);
 prior = find(active_branches == new_branch_num);
 if prior %logic test to see if prior is empty array (if
branch already exists, do nothing)
 else %adds new branch number to active_branches if
branch not already exist
 active_branches(length(active_branches)+1) =
new_branch_num;
 end
 new_branch_col = new_branch_num+2;
%Update branch solution sets
 master_branch (n,2) = 1;
%copy previous branch values to new column
 X_positions (:,new_branch_col) = X_positions (:,branch_col);
 Y_positions (:,new_branch_col) = Y_positions (:,branch_col);
%if 3rd node is to right side =>theta_tri is subtracted
 X_positions (n,new_branch_col) = X_positions
(usable(1),new_branch_col) + ranges(usable(1),n) * cos(theta_axis-
theta_tri);
 Y_positions (n,new_branch_col) = Y_positions
(usable(1),new_branch_col) + ranges(usable(1),n) * sin(theta_axis-
theta_tri);
 end
%%
%test to see if positions were updated
 if abs(prior_x - X_positions (n,branch_col)) <1 && abs(prior_y -
Y_positions (n,branch_col))<1
 change = 0;
 else
 change = 1;
 end
end
end

 84

Matrix_Approach_3.m

function change = Matrix_Approach_3(n)

%LT Dave Zinkhon 22 SEP 08
%Program to solve local position when 3 ranges are known to nodes with
 %know positions
%23 SEP 08 - Revised to make function that is passed ranges and current
local positions
 %and make changes for current node of interest (n is
index of node of interest)
%01 Oct 08 - Revised to take nodes and ranges 3 at a time and solve
vice
 %one single solution
%17 Oct 08 - Revised to use X_positions and Y_positions

global X_positions;
global Y_positions;
global ranges;
global active_branches;

%length is determined prior to executing loop to prevent unnecessary
 %looping if active_branches is added to during loop
length_active_branches = length(active_branches);

%set convergence threshold for solutions
conv_thresh = 17;

for v = 1:length_active_branches
%%
%points to proper column for given branch number
 branch_col = active_branches(v)+2; %+2 aligns to proper column
number

%%
%Logic tests to determine which nodes are being referenced
 R = isnan(ranges(:,n));%logic test for NaN's in ranges
 LN = isnan(X_positions(:,branch_col));%logic test for NaN's in
nodes
 corr = R+LN; %if result is zero, means is range to known
position

 usable = find (corr==0); %array that know which nodes are usable
%%
if length(usable)>=3

%used to track when changes are made to position matrixes
 prior_x = X_positions (n,branch_col);
 prior_y = Y_positions (n,branch_col);
 %%
 combo = comb_gen(length(usable),3); %matrix of possible
combinations of usable data (see Reed)

 85

 for i = 1:length(combo(:,1))
 x = combo(i,1); %x,y,z, are holders for which line of
usable should be referenced
 y = combo(i,2);
 z = combo(i,3);

 k = 1;
 for j = [x,y,z] %imports range data into proper matrix form
 a(k,1) = ranges (usable(j), n);
 c(k,1) = X_positions(usable(j),branch_col);
 c(k,2) = Y_positions(usable(j),branch_col);
 k=k+1;
 end

%Calculations performed here based on Reed's Matrix Formula
 sqr_mat = a(1:end-1, :).^2 - a(2:end, :).^2;
 b = sum(sqr_mat, 2); %diff of sqr of ranges

 sqr_mat = c(1:end-1, :).^2 - c(2:end, :).^2;
 d = sum(sqr_mat, 2); %diff of sqr of positions
 e = c(2:end, :) - c(1:end-1, :); %diff of positions
 out = 2*e \ (b-d);

%verify that range from calculated position to accepted position are
 %within acceptable criteria
 poss (i,1) = out (1,1);
 poss (i,2) = out (2,1);
 accept_criteria = .1; %fraction difference between actual
range
 %and calculated range that is
acceptable
 for p = 1:3
 range_chk = sqrt((poss(i,1)-c(p,1))^2+(poss(i,2)-
c(p,2))^2);
 if abs((range_chk - a(p))/a(p)) > accept_criteria
 poss(i,1) = NaN;
 poss(i,2) = NaN;
 end
 end

 end

%take mean position of all combinations that were not rejected
 q = isnan(poss); %logic test for good data

 sum_x = 0; %used to take mean
 sum_y = 0;
 tot = 0;

 for r = 1:length(q(:,1))
 if q(r,1) == 0
 sum_x = sum_x + poss (r,1);
 sum_y = sum_y + poss (r,2);

 86

 tot = tot + 1;
 end
 end

 X_positions (n, branch_col) = sum_x/tot;
 Y_positions (n, branch_col) = sum_y/tot;
%%
%test to see if change was made to local program
 if abs(prior_x - X_positions (n,branch_col)) <conv_thresh &&
abs(prior_y - Y_positions (n,branch_col))<conv_thresh
 change = 0;
 else
 change = 1;
 end

end

end

 87

APPENDIX B: AMBIGUOUS SOLUTIONS FOR ST. MARGARET’S
BAY SEA TRIAL

This appendix includes the sixteen ambiguous solutions for the ad hoc discoveries

conducted at St. Margaret’s Bay.

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 71936 Node Locations

20
16

19

21
22

23

24
41

42 43
44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

 88

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 6400 Node Locations

20

16

19

21
22

23

2441

42 43
44 45

46

50
51 52 53

x-axis (m)

y-
ax

is
 (

m
)

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 67840 Node Locations

20
16

19

21
22

23

24
41

42 43 44 45

46

48
50 51

52 53

x-axis (m)

y-
ax

is
 (

m
)

 89

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 2304 Node Locations

20
16

19

21
22

23

24
41

42 43 44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 69888 Node Locations

20
16

19

21
22

23

24
41

42 43 44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

 90

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 4352 Node Locations

20
16

19

21
22

23

24
41

42 43 44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 65792 Node Locations

201619 21
22

23

24

41

42

43
44 45

46

48

50 51 52 53

x-axis (m)

y-
ax

is
 (

m
)

 91

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 256 Node Locations

2016

19

21
22

23

24
41

42 43 44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 71680 Node Locations

2016

19

21
22

23

24
41

42 43
44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

 92

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 6144 Node Locations

20
16

19

21
22

23

24
41

42 43
44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 67584 Node Locations

2016
19 21

22

23

2441

42 43
44 45

46

48

50 51 52 53

x-axis (m)

y-
ax

is
 (

m
)

 93

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 4096 Node Locations

20
16

19

21
22

23

24
41

42 43 44 45

46

48
50 51

52 53

x-axis (m)

y-
ax

is
 (

m
)

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 0 Node Locations

20
16

19

21
22

23

24
41

42 43
44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

 94

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 65536 Node Locations

2016

19

21
22

23

2441

42 43
44 45

46
48

50

51 52 53

x-axis (m)

y-
ax

is
 (

m
)

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 69632 Node Locations

20
16

19

21
22

23

24
41

42 43 44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

 95

-3000 -2000 -1000 0 1000 2000 3000 4000 5000
-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3

Ambiguous Solution 2048 Node Locations

20
16

19

21
22

23

24
41

42 43
44 45

46

48 50 51
52 53

x-axis (m)

y-
ax

is
 (

m
)

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

LIST OF REFERENCES

[1] C. W. Ong, A Discovery Process for Initializing Ad Hoc Underwater Acoustic
Networks, M.S. Thesis, Naval Postgraduate School, Monterey, CA, December
2008.

[2] M. H. Hahn, Undersea Navigation via a Distributed Acoustic Communications
Network, M.S. Thesis, Naval Postgraduate School, Monterey, CA, USA, June
2005.

[3] S. P. Ouimet, Undersea Navigation of a Glider UUV Using an Acoustic
Communications Network, M.S. Thesis, Naval Postgraduate School, Monterey,
CA, USA, September 2005.

[4] M. S. Reed, Use of a Acoustic Network as an Underwater positioning System,
M.S. Thesis, Naval Postgraduate School, Monterey, CA, USA, June 2006.

[5] H. A. Kriewaldt, Communications Performance of an Undersea Acoustic Wide-
Area Network, M.S. Thesis, Naval Postgraduate School, Monterey, CA, March
2006.

[6] J. A. Rice, “Seaweb Acoustic Communication and Navigation Networks,” Proc.
Conf. Underwater Acoustic Measurements: Technologies & Results, Heraklion,
Greece (2005).

[7] D. J. Grimmet, “Message Routing Criteria for Undersea Acoustic Communication
Networks,” Proc. IEEE Oceans 2007 – Europe, pp. 1-6, June 2007.

[8] J. A. Rice, B. Creber, C. Fletcher, P. Baxley, K. Rogers, K. McDonald, D. Rees,
M. Wolf, S. Merriman, R. Mechio, J. Proakis, K. Scussel, D. Porta, J. Baker, J.
Hardiman, and D. Green, “Evolution of Seaweb Underwater Acoustic
Networking,” Oceans 2000 MTS/IEEE Conference and Exhibition, vol. 3, pp.
2007-2017, September 2000.

[9] J. A. Rice, V. K. McDonald, M. D. Green, and D. Ports, “Adaptive Modulation
for Undersea Acoustic Telemetry,” Sea Technology, vol. 40, no. 5, pp. 29-36,
May 1999.

[10] J. Kalscheuer, A Selective Automatic Repeat Request Protocol for Undersea
Acoustic Links, M.S. Thesis, Naval Postgraduate School, Monterey, CA, June
2004.

[11] S.P. Ouimet, M. J. Hahn, and J. A. Rice, “Undersea Communication Network as a
UUV Navigation Aid,” Proc. IEEE Oceans 2005, vol. 3, pp. 2485-2490, 2005.

 98

[12] N. Bowditch, The American Practical Navigator, 2002 Bicentennial ed.,
Bethesda, MD. National Imagery and Mapping Agency, 2002.

[13] W. H. Munk, Sound Channel in an exponentially stratified ocean, with
application to SOFAR, Institute of Geophysics and Planetary Physics, Scripps
Institution of Oceanography, 1974.

[14] R. J. Urick, Principles of Underwater Sound, 3rd Edition, New York, NY.
McGraw-Hill Book Company, 1983.

[15] J. A. Rice, A Prototype Array-element Localization Sonobuoy, Naval Ocean
Systems Center, San Diego, CA. Report No. TR1365, December 1990.

[16] L. O. Krause, “A Direct Solution to GPS-Type Navigation Equations,” IEEE
Transactions on Aerospace and Electric Systems, vol, AES-23, no. 2, March
1987, pp. 225-232.

[17] R. E. Francois and G. R. Garrison, “Sound Absorption based on Ocean
Measurements: Part I: Pure Water and Magnesium Sulfate Contributions,”
Journal of the Acoustical Society of America, vol. 72, no. 3, pp. 896-907, 1982.

[18] R. E. Francois and G. R. Garrison, “Sound Absorption based on Ocean
Measurements: Part II: Boric Acid Contribution and Equation for Total
Absorption,” Journal of the Acoustical Society of America, vol. 72, no. 6, pp.
1879-1890, 1982.

[19] R. F. W. Coates, Underwater Acoustic Systems, New York: Halsted Press, 1989.

[20] J. C. Torres, Modeling of High-Frequency Acoustic Propagation in Shallow
Water, M.S. Thesis, Naval Postgraduate School, Monterey, CA, USA, June 2007.

 99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Joseph A. Rice
Naval Postgraduate School
Monterey, California

4. RADM (Ret) Winford Ellis
Naval Postgraduate School
Monterey, California

5. RADM (Ret) Rick Williams
Naval Postgraduate School
Monterey, California

6. LCDR Vicki Taber
Naval Postgraduate School
Monterey, California

7. Professor Daphne Kapolka
Naval Postgraduate School
Monterey, California

8. Professor John Colosi
Naval Postgraduate School
Monterey, California

9. Professor Don Brutzman
Naval Postgraduate School
Monterey, California

10. Dana Hesse
ONR 321 MS
Arlington, Virginia

11. Doug Grimmett
SPAWAR System Center Pacific
San Diego, California

 100

12. Bill Marn

SPAWAR System Center Pacific
San Diego, California

13. Chris Fletcher
SPAWAR System Center Pacific
San Diego, California

14. Bob Creber
SPAWAR System Center Pacific
San Diego, California

15. Garry Heard

Defence Research and Development Canada, Atlantic
Halifax, Nova Scotia, Canada

16. Roald Otnes
Forsvarets Forskningsinstitutt
Horten, Norway

17. LTC Ong Chee Wei

Republic of Singapore Navy
Singapore

18. LCDR Bjorn Kerstens
Defence Materiel Organisation
The Hague, Netherlands

19. LT Scott Thompson

Naval Postgraduate School
Monterey, California

20. LT Jeremy Biediger
Naval Postgraduate School
Monterey, California

21. LT David Zinkhon
United States Navy
Groton, Connecticut

